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ABSTRACT 

In search of interventions targeting brain dysfunction and underlying 
cognitive impairment in schizophrenia, we look at the brain and beyond 
to the potential role of dysfunctional systemic metabolism on neural 
network instability and insulin resistance in serious mental illness. We 
note that disrupted insulin and cerebral glucose metabolism are seen even 
in medication-naïve first-episode schizophrenia, suggesting that people 
with schizophrenia are at risk for Type 2 diabetes and cardiovascular 
disease, resulting in a shortened life span. Although glucose is the brain’s 
default fuel, ketones are a more efficient fuel for the brain. We highlight 
evidence that a ketogenic diet can improve both the metabolic and neural 
stability profiles. Specifically, a ketogenic diet improves mitochondrial 
metabolism, neurotransmitter function, oxidative stress/inflammation, 
while also increasing neural network stability and cognitive function. To 
reverse the neurodegenerative process, increasing the brain’s access to 
ketone bodies may be needed. We describe evidence that metabolic, 
neuroprotective, and neurochemical benefits of a ketogenic diet 
potentially provide symptomatic relief to people with schizophrenia while 
also improving their cardiovascular or metabolic health. We review 
evidence for KD side effects and note that although high in fat it improves 
various cardiovascular and metabolic risk markers in overweight/obese 
individuals. We conclude by calling for controlled clinical trials to confirm 
or refute the findings from anecdotal and case reports to address the 
potential beneficial effects of the ketogenic diet in people with serious 
mental illness. 
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INTRODUCTION 

Traditionally, nutrition has been used as adjunctive therapy for 
improving lipid profiles, blood glucose, insulin resistance, and diabetes, 
however, it has not been thought of as a metabolic therapy affecting the 
structure and function of the brain, despite preliminary evidence 
otherwise [1]. For example, diet has been shown to have an effect on core 
symptoms of pediatric epilepsy [2]. Recent therapeutic focus has shifted 
towards the influence of nutrition on neural network brain stability, 
brain-derived neurotrophic factor, ATP energy function and 
neurotransmitter balance [1,3]. Diet, in particular ketogenic diets, have 
been identified to influence several biological processes, including 
mitochondrial energy metabolism, inflammatory processes, oxidative 
stress, monoaminergic activity, and progression of neuro-degeneration, 
and hence are considered a metabolic therapy itself [4]. Many neurological 
diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), 
epilepsy, bipolar disorder (BD), schizophrenia (SZ), and major depressive 
disorder (MDD) are characterized by cerebral glucose hypometabolism, 
insulin resistance, neurotransmitter imbalances, mitochondrial 
dysfunction, oxidative stress, and inflammation as potential causative 
factors [5,6]. Insulin resistance is a risk factor for dementia [7], cognitive 
deterioration later in life in those with type 2 diabetes mellitus (T2DM), 
and mood disorder, such as depression [8,9] as well as cognitive 
dysfunction in youth [10]. Reductions in left hippocampal grey matter 
volume have also been found to be common to MDD, BD, and SZ [11], 
showcasing the close neural interaction shared by these conditions. 
Therefore, new interventional approaches of metabolic psychiatry 
prevention and treatment targets must be further studied and may have 
the potential to yield universal improvements in psychiatric conditions 
through neuronal access to metabolic changes with nutritional ketones 
[11]. We review the current body of evidence for the effects of Ketogenic 
Diets (KD) on neuronal networks.  

The KD has been identified as a potential treatment for 
neurodegenerative and neuropsychiatric conditions [12–14]. Initially used 
by clinicians in the 1920s as a treatment for epilepsy, this high-fat, 
moderate protein, low-carbohydrate diet releases ketone bodies 
(principally β−hydroxybutyrate (β-HB) and acetate) from the breakdown 
of fat and serves as an alternative fuel, diverting away from the use of 
glucose as the body’s main energy source [15]. See figure 1. Adhering to a 
sustained KD, an individual achieves a level of nutritional ketosis, contrary 
to and well below pathological ketoacidosis by diet instead of starvation. 
[16]. During times of glucose deprivation or increased energetic demands, 
the brain has evolved to utilize ketones to preserve and augment critical 
central functions [17]. This is evident in a fasting state such as during sleep, 
when ketones can increase and maintain circulating ketone bodies, 
especially β-HB. Increased levels of β-HB have been reported to improve 
symptoms of various age-related diseases [18], thereby providing a 
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rationale for the development of therapeutic ketogenic interventions in 
neurodegenerative diseases [19]. 

 

Figure 1. A depiction of the biochemistry of ketogenesis in the liver and brain. Prolonged glucose restriction 
leads to an increased glucagon to insulin ratio, which leads to release of free fatty acids into the bloodstream. 
Free fatty acids are taken up into liver mitochondria where they are used to produce acetyl coenzyme A 
(Acetyl-CoA). These molecules then enter ketogenesis through the formation of ketone bodies. Acetyl-CoA is 
converted into acetoacetate, which then allows for reversible reduction to beta hydroxybutyrate (BHB), as 
well as acetone. These ketone bodies then exit the liver and enter peripheral tissues and the brain, which is 
facilitated by monocarboxylic acid transporters. When in situ, BHB can be converted back into acetoacetate, 
serving as an eventual source of acetyl-CoA to release energy via the tricarboxylic acid cycle. Abbreviations: 
Acetyl-CoA, acetyl coenzyme A; BHB, beta- hydroxybutyrate; CAT, carnitine acylcarnitine translocase; CO2, 
carbon dioxide; FAs, fatty acids; MCT, monocarboxylic acid transporter; TCA, tricarboxylic acid. 

KETONES ARE FUEL FOR THE BRAIN AND BODY 

Although the human brain is only 2% of the body’s volume, it consumes 
over 20% of its energy at rest [20], and accordingly, the brain is 
particularly vulnerable to changes in metabolism. While glucose is 
normally considered to be the brain’s default fuel, ketones provide 27% 
more free energy than glucose [21]. People with insulin resistance cannot 
use glucose effectivity, with obvious consequences for brain function such 
that insulin resistance is an early risk-factor for dementia later in life [9]. 
In neurodegenerative conditions, the brain is unable to use glucose 
effectively due to both glial and neuronal changes in glucose 
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transportation, in addition to changes in cellular respiration enzymatic 
activities, and insulin signaling [17]. During times of glucose deprivation 
or increased energetic demands, the brain has evolved to utilize ketones 
to preserve and augment critical central functions thereby providing a 
rationale for the development of therapeutic ketogenic interventions in 
AD and other neurodegenerative diseases. Ketones are released from free 
fatty acids taken up by the liver after glycogen stores are depleted in a 
fasting state. Mattson et al. suggest that this fuel switch is accompanied by 
biological adaptations of neural networks in the brain that optimize their 
function [14]. As might be expected, cognitive impairments in 
schizophrenia are related to brain insulin resistance, supporting its role in 
the pathophysiology of cognitive dysfunction in SZ [22]. Ketones are anti-
inflammatory, decrease production of reactive oxygen species, and 
upregulate mitochondrial biogenesis in the brain [16]. 

BENEFITS OF THE KETOGENIC DIET 

Nutritional ketosis is associated with improvement in metabolic health 
and mitochondrial function [16]. For example, a randomized controlled 
trial of 119 participants by McClernon et al. [23] reported participants 
assigned to a KD versus a low fat diet had significant decreases in body 
mass index (BMI) after six months, alongside mood improvements, and a 
significant reduction in negative affect and hunger [20]. Similarly, 
participants in an uncontrolled intervention study experienced a decrease 
in insulin levels and BMI, as well as an improvement in cognitive function 
assessing working memory and speed of processing after 12 weeks [24]. As 
a result of the extracellular changes that occur during ketosis, intracellular 
sodium concentrations would be expected to decrease correspondingly, 
which is a common feature of mood-stabilizing medications [25]. The 
utilization of ketone bodies by the brain instead of glucose has been 
proposed to bypass glucose hypometabolism commonly associated with 
neurological diseases, evidenced in a study by Cunnane et al. [26] who 
found that uptake of ketone bodies in individuals with AD has a beneficial 
effect on cognitive outcomes. Ketone bodies may also provide neural 
benefits to younger individuals and those not yet in a hypometabolic state, 
as ketones increase Gibbs free energy exchange for ATP by 27% compared 
to glucose, potentially representing a more efficient fuel for the brain 
[21,27]. In addition to bypassing glucose hypometabolism in the brain, 
ketone bodies have several favorable metabolic adaptations in regards to 
neurotransmitter imbalances, oxidative stress, and inflammation, 
characteristic of several neurological diseases [5]. While there may be 
other neurobiological mechanisms, see Table 1 and Figure 2 for potential 
mechanistic effects. 
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Table 1. Potential mechanistic effects of the ketogenic diet underpinning neurological conditions. 

Neural Deficit Neural Symptom Ketogenic Therapy Effect 

Mitochondrial dysfunction Decrease in energy level production Induces mitochondrial biogenesis 

Oxidative stress and 

inflammation 

Increase in ROS leading to neuronal 

damage 

Decreases ROS levels with ketone bodies; 

increases HDL cholesterol levels for 

neuroprotection 

Na/K ATPase loss of function Impaired ATP production via 

oxidative phosphorylation 

Provides alternative energy source via 

ketosis, replenishes acetyl-CoA 

Imbalance in 

monoaminergic activity 

Changes in behavior and emotion 

due to imbalance in 

neurotransmitter concentrations 

Regulates neurotransmitter metabolites 

via ketone bodies and intermediates 

GABA/glutamate imbalance Depressive and mania symptoms, 

unsustainable energy requirements, 

and neuronal damage 

Increases GABA levels whilst decreasing 

glutamate levels 

Abbreviations: ATP, adenosine triphosphate; GABA, gamma-aminobutyric acid; HDL, high-density lipoprotein; K, potassium; Na, 

sodium; ROS, reactive oxygen species. 

 
 

Figure 2. A diagram depicting a basic mechanistic model of the ketogenic diet and its potential benefits. 
Neurobiological and physiological mechanisms of the ketogenic diet are shown in rectangular boxes, with 
corresponding effects in circles. The flow chart depicts at a high level possible mechanisms of ketogenic diet 
on cognition and mental health functioning. Abbreviations: IS, insulin sensitivity, ROS, reactive oxygen 
species.  

Imbalance of the GABA/glutamate neurotransmitters and glutamate 
excitotoxicity are predominant features of neurological diseases, from 
epilepsy [28] to AD [29], which have been shown to be corrected by KD [29–
31]. A study by Olson et al. 31 demonstrated that a KD reduced seizures in 
a mouse model of epilepsy and that this was associated with an increase 
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in GABA/glutamate and decrease in excitotoxicity. Similarly, in another 
study, Kraeuter et al. [32] pharmacologically manipulated 
GABA/glutamate balance to generate a mouse model of SZ and reported 
normalization of symptoms after three weeks of exogenous β-HB 
administration. It has been generally accepted that oxidative stress 
contributes to most, if not all, chronic diseases, including SZ, BD, and MDD 
[6]. The KD has a myriad of corrective mechanisms of oxidative stress in 
neurological disorders, which have been reviewed in depth elsewhere 
[30,33]. Oxidative stress and inflammation are mutually reinforcing 
disease states [5,30], with recent post-mortem and in-vivo human evidence 
demonstrating the association between brain inflammation and mental 
illness [34]. This is also seen in other mental illnesses, as a study by 
Marques et al. (2019) found increased inflammatory markers (translocator 
protein) in the brains of living SZ patients [35].  

A 2019 study by Athinarayanan et al. [36] investigated the effects of the 
KD compared to usual care in patients with T2DM over two years, finding 
significant improvements in restoring cardiometabolic function whilst 
utilizing less medication. This was evident through reductions in HbA1c, 
fasting glucose, fasting insulin, BMI, blood pressure, and triglycerides in 
the KD group. There was also a resolution of diabetes in the KD group 
(53.5% reversal, 17.6% remission) but not in the control group. Similar 
reductions in HbA1c, BMI, and medication use when comparing KD to 
usual care in T2DM patients have been reported in other studies 
investigating effects after 10 weeks and one-year [37,38]. Furthermore, a 
recent five-year clinical trial of the KD in patients with T2DM has found 
similar positive cardiometabolic changes, demonstrating the potential for 
beneficial long-term outcomes [39]. The increase of small LDL particles is 
a common characteristic of diabetic dyslipidemia, and this has been found 
to be reversed by a KD [40]. Correspondingly, these positive 
cardiometabolic changes have been credited to lower the risk of 
cardiovascular disease in the T2DM population. Conversely, a recent 
review by Parry-Strong et al. [41] investigated the effects of the KD on 
T2DM, concluding that the diet may cause reductions in HbA1c, however, 
evidence of an advantage over other strategies is limited and further 
research is needed to provide definitive evidence. 

CLINICAL EVIDENCE OF THE KETOGENIC DIET IN NEUROLOGICAL 
CONDITIONS 

The KD first came to prevalence following its use in epilepsy in the 
1920s and is currently mainly used in children with treatment resistant 
seizures [42]. Current research investigating the KD in epileptic adults 
does not show effects as favorable to those found in children, with fewer 
adult studies reporting seizure freedom or reduction compared to studies 
in children [42,43], possibly because adults typically fix their own meals 
and their eating is not monitored. A 2018 randomized controlled trial by 
Kverneland et al. [44] investigated the effects of a modified Atkins diet on 
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adult epileptic patients. This diet also induces ketosis by limiting 
individuals to a maximum carbohydrate intake of 20 g/day. When 
compared to a control group, the intervention group showed significant 
reductions in seizure frequency, however, this was only a moderate 
reduction of 25%.  

The accumulation of amyloid plaques through mitochondrial 
dysfunction, glucose hypometabolism, and neuronal loss are hallmark 
features of AD [29,45]. Recent management strategies for AD have been 
aimed at modifying dietary and lifestyle habits, with the KD gaining 
traction as an intervention [29]. Several preclinical studies on the KD in 
Alzheimer’s have yielded promising results. Circulating ketone bodies of 
β-HB were found to attenuate the toxic effects of the amyloid beta peptide 
and protect mitochondrial function [46]. Additionally, studies in animal 
models have proved encouraging, with Van Der Auwera et al. [47] finding 
a 25% reduction in amyloid beta levels in mice on a KD compared to 
controls.  

The use of the KD as an anticonvulsant intervention in BD was first 
proposed in 2001 by El-Mallakh and Paskitti [25], highlighting the diet’s 
positive effects on glucose hypometabolism. However, there has been a 
lack of available human data investigating KD in BD. The first case series 
by Phelps, Siemers, and El-Mallakh [48] focused on two female patients 
with BD who were assigned a KD and maintained nutritional ketosis for 
up to three years. Both patients experienced the mood stabilizing effects 
commonly seen with medication, with no adverse reactions reported. It 
was hypothesized that the diet reduced intracellular sodium and calcium, 
which acidified blood plasma and stabilized mood [48]. The energy 
metabolism of ATP generated in BD is incapable of sustaining the sodium-
potassium pump in neurons, which may cause a depressed state in 
conditions of severe ATP use deficiency, and a manic state in less severe 
ATP use deficiency [49]. This has led to the KD being hypothesized as an 
effective therapeutic intervention in BD due to positive effects on 
mitochondrial metabolism and function [50]. The underlying 
characteristics shared by these neurological conditions can also be 
evidenced in MDD. The mood stabilization effects of the KD have been 
identified as potentially recreating the pharmacological effects of mood 
stabilizing medication whilst circumventing detrimental side effects 
[15,25]. Reductions in neuroinflammation associated with KDs has been 
suggested to provide antidepressant effects and subsequently improve 
symptoms in patients with mood disorders [51,52]. Similarly in PD, the 
antioxidant and anti-inflammatory effects of the KD have been identified 
as neuroprotective mechanisms to potentially slow or halt progression of 
the disease [33]. Research has found that the presence of β-HB in PD 
patients have been found to be neuroprotective, supporting KD as a 
therapeutic intervention for PD [46,53]. 

Effective glucose metabolism maintains global excitatory neural 
network function [54]. Therefore, low availability of energy substrates can 
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reduce synaptic function and lead to neural network instability [55], as is 
the case with the glucose hypometabolism that the discussed neurological 
conditions share. Neural network instability has recently been identified 
as a potential link to recurrent seizures in epilepsy and the use of the KD 
as a metabolic therapy has been speculated to provide a buffer against 
neural excitability and promote normal function [56]. The effects of the KD 
on mitochondrial function may be from improving ATP energy 
metabolism, likely improving neuronal homeostasis and also enabling 
higher resilience to neural damage during seizures [57]. The link between 
epilepsy and SZ has been well established, and the efficacy of some anti-
epileptic medications in SZ patients suggests shared disease mechanisms 
[58]. There seems to be an association between metabolism and neural 
network stability and given the established success of the KD as a 
therapeutic intervention in epilepsy, it is likely that it will produce the 
same results in SZ.  

SCHIZOPHRENIA, METABOLISM, INFLAMMATION, AND NEURONAL 
TARGETS  

SZ is diagnosed based on positive symptoms, such as delusions and 
hallucinations, and negative symptoms, such as anhedonia and 
amotivation. It is also characterized by cognitive deficits that are 
responsible for poor social and occupational outcomes [59]. Neuroleptic 
medications treat positive symptoms, but they have not been able to 
improve cognition, nor do they target pathophysiological mechanisms 
thought to underlie these deficits. Furthermore, antipsychotic use is 
frequently associated with motor and metabolic side effects [54]. 
Therefore, research is additionally focusing on both interventional 
strategies targeting brain dysfunction and the potential role of systemic 
metabolic dysfunction. In understanding the etiology of SZ, a leading 
theory is the abnormal neurodevelopment hypothesis which includes the 
influences of genetics, prenatal and perinatal disorders, and its combined 
interaction with environmental factors [60]. Another condition 
characterized by abnormal neurodevelopment is epilepsy [61], and given 
the observed ability of the KD to improve symptoms of epilepsy in 
pharmaco-resistant children [42], it suggests the possibility that the KD 
may be beneficial in controlling other potential neurodevelopmental 
conditions such as SZ. 

As mentioned, insulin resistance and obesity have been historically 
linked to SZ, even before the advent of antipsychotic medication [62]. 
Importantly, antipsychotic medication may worsen cognitive dysfunction 
in SZ patients [63]. A recent meta-analysis affirms the presence of 
disrupted glucose metabolism and insulin resistance in medication-naïve 
first-episode SZ patients, suggesting that SZ itself, and not just the 
medication used to treat it, increases the risk of T2DM, cardiovascular 
morbidity and mortality, and more generally, accelerated aging [62]. Even 
young people with SZ are prone to diseases associated with aging including 
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metabolic disease [64,65] and cognitive deficits [66,67]. Mitochondrial 
dysfunction is a potential mechanism underlying the association between 
SZ and glucose dysregulation [68]. SZ is also associated with systemic 
inflammation, as a study found significantly increased inflammatory 
markers on PET scan in the microglia of SZ patients compared to healthy 
controls [35]. Genome-wide studies have confirmed patients with SZ to 
have an inherent genetic predisposition to insulin resistance [69,70]. 

FUNCTIONAL DYSCONNECTIVITY IN SCHIZOPHRENIA 

Human neuroscience has benefitted from the use of functional MRI 
(fMRI) to elucidate the functional neuroanatomical underpinnings of 
cognition associated with injury, illness, and age. fMRI has been used for 
more than two decades to assess neural function in specific regions of the 
brain as subjects perform a variety of tasks varying in difficulty and made 
more difficult by the overlay of scanner noise and physical restraint. More 
recently, the field discovered that much can be learned about the function 
of the brain by studying spontaneous oscillations of brain activity during 
rest, avoiding confounding factors of motivation and intellect for task 
performance [71]. Just as significant was the discovery that functional 
connectivity could be assessed by correlating oscillating activity in one 
region of the brain with another. This likely reflects the scaffolding 
between different brain areas, when they are repeatedly co-active, 
recalling Hebb’s rule: “units that fire together, wire together” [72]. While 
functional dysconnectivity is related to cognitive deficits in SZ, it is not 
specific to a particular neural network or cognitive domain [73]. As might 
be expected, this resting-state functional connectivity is consistent with 
structural connectivity, as it is calculated over long periods of time [74]. 

Accordingly, most of the functional connectivity literature reports on 
static measures of connectivity, without regard to state fluctuation or 
transitions between moments in time in the resting scan time series. 
Recently, we [75–78] and others [1] have broadened this to include 
measures of functional network stability from moment to moment. 
Specifically, network stability reflects dynamic connectivity by assessing 
how long a network of independent nodes, within and between brain 
regions, maintains a stable connection. Network instability increases with 
age, cognitive deficits, and in T2DM [1]. 

KETOSIS STABILIZES BRAIN NETWORKS 

Muiica-Parodi et al. [1] reported that a one-week KD increases 
functional brain network stability, restoring it to that seen in younger 
people. They showed that in younger (<50 years old) adults, nutritional 
ketosis stabilized functional networks. Most importantly, in a separate, 
larger sample, they found network instability increased with age and with 
decreases in cognitive functioning [1], with the aging effect being 
accelerated in young people with T2DM. Although ketosis has a significant 
cumulative and synergistic effect over the years, these network changes 
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occurred with a single week of ketosis, suggesting short-term adaptations 
to network stability are feasible with a KD. Ruling out any effects of weight 
loss on network stability, the authors reported similar network 
stabilization when giving participants a single exogenous ketone ester 
drink. 

KETOGENIC DIETS AND SYMPTOMS IN SCHIZOPHRENIA 

It is thought that the mechanism of KD bypassing glucose 
hypometabolism in patients with SZ helps increase oxygen consumption, 
improves ATP energy metabolism, and induces brain-derived 
neurotrophic factor to improve cognition [3,54,79]. In a postmortem 
analysis study by Sullivan et al. [80] investigating the brains of mouse 
models of SZ, the authors reported a 19%–22% decrease in glucose 
transporter expression, GLUT1 and GLUT3, and in glycolytic genes. These 
brains also unveiled a 22% increase in the β-HB importer (MCT1), 
suggesting that the brain may be compensating for cerebral glucose 
hypometabolism by upregulating its facility to transport ketone bodies. 
Therefore, the brain with SZ may be metabolically prepared to respond to 
a KD. Further studies of KD in animal models have yielded favorable 
results [32,81,82], however, clinical evidence in human subjects is limited 
to case reports and small pilot studies [83–85]. A case report by Palmer [85] 
reported on two instances of SZ patients who experienced a drastic 
improvement in symptoms after adopting a KD. Neither patient started a 
KD to treat their SZ, however, within two-to-four weeks, both patients 
noticed a dramatic reduction in symptoms of psychosis and subsequently 
stopped all antipsychotic medications. Similar results were reported in a 
case study by Kraft and Westman [83], whereby a patient with a 50-year 
history of SZ reported a resolution in longstanding symptoms of auditory 
hallucinations after one week of initiating a KD. Upon 12-month follow-up, 
the authors reported that the patient was able to adhere to the diet, only 
having 2–3 isolated episodes of consuming carbohydrates around 
holidays, however, these periods did not correspond with a recurrence in 
her symptoms. 

A pilot case series by Gilbert-Jaramillo et al. [86] investigated the effects 
of a 2000 kcal, 3:1 KD (3 parts fat to every 1 part protein and carbohydrate) 
over six weeks on twins diagnosed with SZ. Both participants had tried 
numerous medications to resolve their symptoms, however, these were 
unsuccessful. Medications were continued throughout the study. 
Unfortunately, both participants struggled with compliance to the diet, 
reporting difficulty due to onset of severe high sugar food cravings after 
14 days of the KD. The Positive and Negative Syndrome Scale (PANSS) was 
used as a measure of SZ symptoms, which decreased modestly alongside 
body fat over the six-week intervention. Although the study showed that 
the KD can have short-term benefits on psychiatric condition, metabolic 
function and body composition in young adults, results were limited due 
to a lack of compliance to the KD. Efforts to improve the compliance are 
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needed for the field to move forward, and alternate ways to promote 
ketosis should be explored. Ultimately, blood ketone levels should be 
monitored to allow the most flexibility in ketogenic treatments. 

A recent study by Danan et al. [87] investigated the effects of the KD on 
patients with severe, persistent mental illness whose symptoms were 
poorly controlled with neuroleptic medication. Of the 31 patients, 12 were 
diagnosed with SZ, however, two of the SZ patients dropped out due to 
inability to adhere to the KD for >14 days. Throughout the duration of the 
study period, the patients were voluntarily admitted to a psychiatric 
hospital 6 days per week to allow for close monitoring. During these 
periods they were given ketogenic meals, however, for up to 36 
consecutive hours on the weekends they were unsupervised. The duration 
of the intervention ranged from 6 to 248 days, with significant 
improvements in symptoms of depression (Hamilton Depression Rating 
Scale, Montgomery-Åsberg Depression Rating Scale) and SZ (PANSS), 
alongside metabolic health measures of BMI, blood pressure, blood 
glucose, and triglycerides. All 10 patients with SZ recorded improvements 
in PANSS scores, with a mean reduction from 91.4 to 49.3. The minimal 
clinically significant change in PANSS of 16.5 was achieved in all 10 
patients, however, the average reduction of 42.1 points is far above this 
and is therefore supportive of the KD as an interventional strategy for SZ 
[88]. Study limitations include retrospective data, sample, and unique 
controlled conditions where intervention was applied. Also, there was no 
hospitalized, diet as usual control group for comparison with the KD 
patients; it is possible that just being in the hospital is associated with 
improvement in PANSS. The high compliance rate of 90% was likely due 
to food being prepared 6 days per week in a controlled monitored setting.  

Preliminary analytic data of approximately half (13) of the participants 
to date in a Stanford open label, single arm pilot trial in an outpatient 
population was recently presented and revealed benefits with the KD on 
patients with BD and schizophrenia. This cohort included 13 patients, 10 
with BD and 3 with schizophrenia, with 1 drop out. Participants were 
provided KD metabolic therapy for 16 weeks and had initially weekly and 
after one-month, biweekly clinical evaluations with a psychiatrist and 
nutritionist coach. Metabolic improvements achieved overall included 
10% decrease in BMI, 19% reduction in absolute fat mass, systolic/diastolic 
blood pressure decrease, and 31% reduction in visceral adipose tissue. 
Metabolic syndrome was reversed in all who met criteria at the outset of 
the study (3). Additional metabolic biomarkers improvements included a 
28% decrease in hs-CRP, a high sensitivity inflammatory metabolic marker 
and 21% reduction in triglycerides. Psychiatric improvements were also 
observed, with an overall 16% improvement in life satisfaction (MANSA 
Quality of Life), 34% improvement in Clinical Global Impression, 25% 
reduction in depressive symptoms on patient health questionnaire and 
28% reduction in sleep quality with Pittsburgh Sleep Quality Index [15,89]. 
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The preliminary results suggests that a KD as a metabolic and mental 
clinical therapeutic intervention offers promise. 

SAFETY AND COMMON SIDE EFFECTS OF KETOGENIC THERAPIES 

Among 16 published controlled clinical trials with more than 25 
subjects for parallel design, or fewer than 15 subjects for crossover design, 
total cholesterol decreased in one study [90], increased in one study [53], 
and did not change in other 6 studies [91–96]. High-density lipoprotein 
cholesterol increased in 4 out of 12. Low-density lipoprotein cholesterol 
was unchanged in most studies, but increased in two studies [53,97]. 
Triglycerides decreased by 50 percent in reported studies [91,94,95,97–
100] and blood pressure decreased by 33 percent [96,97]. C-reactive 
protein significantly decreased in one study [97]. These data suggest a KD 
improves various cardiovascular risk markers in overweight/obese 
subjects. 

The adverse effects most commonly reported initially in KDs include 
fatigue, constipation, weight loss, and transient hyperlipidemia [14,25], 
however, these side effects have been found to improve with continued 
adherence to the diet [14]. The weight loss effect is welcome for many, 
particularly in individuals with obesity, however, would need to be 
monitored regularly depending on the medical condition. Additionally, 
lipid profiles in individuals starting a KD have been shown to acutely 
increase when beginning the diet, but normalize after approximately one 
year [101]. Normal healthy lipid profiles have been found to persist in long 
term KD use, in excess of three years [102]. It is worth noting that the 
carbohydrate composition of diets in studies varied, from the traditional 
KD which typically consists of 20 g/day, to those which consist of 50 g/day 
or roughly 30-40% of caloric intake. Therefore, adverse effects may not be 
homogenous across all studies. Individuals undergoing the medicalized 
version of the KD should be monitored and given corresponding 
supplementation if needed [14]. 

Diet adherence and compliance has been mixed and remains a barrier 
to successful application of the KD [42]. A meta-analysis of compliance 
rates in adults with epilepsy on the KD reported a 45% overall compliance 
rate [103], with the modified Atkins diet yielding higher compliance rates. 
Similar results were found in an observational study of 139 adult patients 
with epilepsy treated with a KD, 48% of patients discontinued the diet or 
were lost to follow-up [104]. The main reason cited for discontinuation was 
difficulty adhering and having enough external food choices. However, 
recently the food environment has shifted to become more ketogenic 
friendly than previously [40]. A 2018 by Hallberg et al. reported a 83% 
compliance rate to the KD after one year in patients with T2DM [37]. 
Compliance rates of other diets are not dissimilar from those previously 
reported of the KD, as adherence to a gluten free diet has been reported to 
be between 17-45% in adults with coeliac disease [105], and a 26.4% 
adherence to a Mediterranean diet in individuals 65 or older [106]. Recent 
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trials of the KD in T2DM have shown adherence rates of nearly 50% at five 
years, whilst maintaining improvements in cardiometabolic health 
markers [39] and exhibiting no major adverse effects [41]. 

CONCLUSIONS 

In the search for interventions addressing brain dysfunction 
underlying cognitive impairment in SZ and bipolar illness, we look 
comprehensively at the brain and beyond to the potential role of 
dysfunctional central and systemic metabolism. Evaluating metabolic 
dysfunction can also help us understand the pathophysiology of serious 
mental illness. Diverting attention towards cardiovascular metabolism 
and addressing neural network stability and insulin resistance may 
advance developments in treatment. The mechanisms of action of a KD 
include efficient energy mitochondrial metabolism, neurotransmitter 
function, improving neural network stability and improvements in 
oxidative stress and inflammation. The metabolic, neuroprotective, and 
neurochemical benefits of the KD have the potential to provide 
symptomatic relief to patients, in SMI, yet this is limited by a lack of robust 
clinical trial data specifically in mental health. To reverse this 
neurodegenerative process, increasing neurons’ access to ketone bodies 
may be critical. Numerous clinical reviews have called for further 
research to confirm anecdotal and case findings [5,6,81,82], as early 
evidence of positive effects of the KD on schizophrenic and bipolar 
symptoms warrant further investigation and require confirmation 
through controlled clinical trials.  
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