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ABSTRACT 

Accurate forecasts of future energy usage are an important step towards 
reaching carbon mitigation commitments for city policymakers. Beyond 
identifying sources of emission intensity for a region, the forecast 
mechanism must be capable of compensating for gaps in available data 
and of accounting for the uncertainties behind the dynamics of an urban 
system. By considering a range of possible scenarios, the prediction model 
can identify recurring sources of high energy consumption and fine-tune 
areas of priority with incoming data. This paper considers the impact of 
predicted shifts in demographic and economic trends for the region on 
transportation energy consumption. The transportation energy use model 
is formulated from the Delaware Valley Regional Planning Commission 
(DVRPC) open-source Household Travel Survey (HTS). Based on these data 
inputs, a Machine Learning (ML) algorithm is implemented in the form of 
an Extreme Gradient Boosting (XGBoost) model to estimate energy 
consumption with a corresponding SHapley Additive exPlanations (SHAP) 
analysis of feature contribution. From this, a synthetic population is 
produced using the ML outputs and marginal sums with data from the 
Census Bureau’s American Community Survey (ACS) to estimate energy 
consumption for the region. The results indicate that shifting dominant 
travel modes and income distribution in accordance with the Enduring 
Urbanism forecast projections led to a decrease in household 
transportation energy use. Moreover, additional analysis of the model 
output demonstrates that changes in energy use depend strongly on 
geographic area and income group. 
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INTRODUCTION 

In 2018, the U.S. emitted 6677 million metric tons of CO2 [1]. City 
planners and policy makers are urgently seeking a new sustainable city 
planning paradigm. Given the uncertainties and temporal dynamics of 
climate change, urban policy makers must identify projects and target 
areas that minimize energy consumption efficiently under the constraints 
of a finite budget. It is imperative to consider a range of potential future 
forecasts and identify the corresponding variables responsible for energy 
consumption. In this way, the forecasts aid in the reaching of carbon 
emission benchmarks and in the creation of mitigation policies that 
integrate knowledge of how the city system will evolve over time. 

When predicting energy consumption, most studies utilize either top-
down or bottom-up approaches. The top-down methods draw on 
historical aggregate data sets of energy consumption and top-level 
indicators of energy use, such as macroeconomic and/or demographic 
characteristics of the region [2–7]. Most often, the intention behind top-
down models is to estimate the impact of various large-scale features on 
energy consumption at the regional level, but this approach is not as 
effective for analyzing the sources of energy use at a more disaggregate 
scale. A bottom-up approach takes sample data from smaller geographic 
units in the region to develop estimates and can be applied to analyze the 
spatial variation of energy use [8–10]. 

Although bottom-up approaches can discern micro-level patterns in 
energy use, the acquisition of reliable data at the disaggregate scale can 
be challenging for larger study areas. As top-down and bottom-up models 
perform at different scales, variation in results between each approach is 
often inevitable [11]. In Zhang et al. [12], the authors propose a solution 
to this dilemma by applying an Elastic Net regression model and 
statistically matched Residential Energy Consumption Survey (RECS) and 
Public Use Microdata Sample (PUMS) data to develop a synthetic 
population for the Atlanta Metropolitan region. This technique 
successfully produced residential energy estimations consistent with top-
down estimations for the study area. 

With respect to a transportation energy model, Amiri et al. [13] 
evaluates the performance of various modeling techniques for predicting 
household transportation energy consumption with Mean Absolute 
Errors (MAE), Mean Absolute Percentage Errors (MAPE), and Average R2 
scores. Machine learning methods were found to outperform Elastic Net 
regularization for the transportation energy use model. 

Reiter and Marique [14] utilize both top-down and bottom-up 
approaches to develop forecasts of energy consumption in their 
simulation of urban renewal for Liège, Belgium. Demographic forecasts 
are drawn from recent trends in local and national datasets in a top-down 
approach, whereas energy usage data was developed through transport 
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and building energy models in a bottom-up approach. The authors then 
constructed six plausible scenarios relating to changes in regional energy 
policies for existing residential building stock and the increase of school 
to work travel of residents. The results of the Liège study indicate that 
housing renovation would be essential in order to reach the city’s carbon 
emission benchmarks, and moreover demonstrate how available energy 
use prediction models can be integrated into scenario planning contexts. 

Previous studies on building or transportation sector energy 
consumption models tend to focus on model accuracy while neglecting 
model interpretability. Nevertheless, understanding the decisions behind 
a model’s predictions is a critical factor in the model’s practical 
applicability, as the validity of the prediction cannot be justified by solely 
relying on model accuracy. 

Explainable Artificial Intelligence (XAI) offers the tools and methods to 
reach interpretable machine learning predictions without sacrificing 
model complexity. At the present, there are very few published studies 
that address the application of XAI in the transportation sector. 

The current research has two objectives: to apply XAI on a 
transportation energy model with a focus on the interpretation of local 
and global features and to demonstrate how existing bottom-up 
approaches to predicting energy consumption can augment scenario 
planning forecasts. With this, urban planners and policy makers can trust 
the mechanisms underlying the predictive model and utilize these 
insights to develop targeted policies to mitigate transportation energy 
consumption in the region. This study develops a ML prediction model on 
household transportation energy [13] and produces a synthetic dataset of 
energy estimations for the study area [12,15]. The base case and scenarios 
are constructed from available projections of demographic and 
socioeconomic data for Philadelphia County. The model inputs are altered 
according to a selection of potential future trends, resulting in 
corresponding synthetic datasets for each scenario. The study then 
analyzes how the forecasted shifts in household-level behavior alter the 
model output and identifies potential geographic areas of interest based 
on variation in transportation energy use estimates across the study area. 

METHODOLOGY 

Data and Data Processing 

The 2012 open-source Household Travel Survey (HTS) is used to 
develop a household transportation energy consumption prediction 
model. The Delaware Valley Regional Planning Commission (DVRPC) 
conducts household travel surveys for the Delaware Valley region. The 
2012 HTS contains data on the daily travel behavior of residents in the 
Pennsylvania counties of Bucks, Chester, Delaware, Montgomery, and 
Philadelphia. The HTS also includes New Jersey Delaware Valley counties 

J Sustain Res. 2022;4(1):e220001. https://doi.org/10.20900/jsr20220001 

https://doi.org/10.20900/jsr202200019
https://www.vocabulary.com/dictionary/interpretable%23:%7E:text=Definitions%20of%20interpretable,being%20explicated%20or%20accounted%20for
https://www.vocabulary.com/dictionary/interpretable%23:%7E:text=Definitions%20of%20interpretable,being%20explicated%20or%20accounted%20for
https://www.vocabulary.com/dictionary/interpretable%23:%7E:text=Definitions%20of%20interpretable,being%20explicated%20or%20accounted%20for
https://www.vocabulary.com/dictionary/interpretable%23:%7E:text=Definitions%20of%20interpretable,being%20explicated%20or%20accounted%20for


Journal of Sustainability Research 4 of 24 

of Burlington, Camden, Gloucester, and Mercer. The dataset contains 
demographic and travel information for 5677 households, 13,830 
residents, 10,570 vehicles, and 48,646 trips across 10 counties. For every 
household member, information on travel mode, trip purpose, 
destination and time of travel was recorded, along with demographics 
such as age, gender, vehicle availability, and employment status. 

In addition to the HTS, the DVRPC’s shapefiles of zonal boundaries and 
zonal data such as employment density and the number of households, 
schools, and bus stops are applied as model inputs to evaluate 
neighborhood characteristics. In all, 31 continuous and 12 categorical 
variables were selected to be included in the analysis. Descriptive 
statistics for these variables are available from the Supplementary 
Materials in Tables S1, S2, and S3 for demographics, trip information, and 
zone characteristics, respectively. In order to reduce collinearities across 
variables related to energy consumption, a multi-step screening process 
was performed. Also, variables that are directly used in transportation 
calculations such as HH travel distance were removed. The data and data 
processing methods are described comprehensively in. 

Household transportation energy (HTE) consumption is the output of 
the prediction model, and depends on household trip generation, travel 
mode, fuel type, and trip distance. The HTE is calculated using the method 
described in Jiang [16] and is based on the DVRPC’s reported daily travel 
patterns. 

Equations (1–3) show how transportation energy consumption is 
measured at the household level. Fuel economy, fuel energy, and energy 
intensity factors are obtained from the Department of Transportation 
tables [17]. 

𝐸𝐸𝑖𝑖𝑇𝑇 =  � Eim

m

(1) 

𝐸𝐸𝑖𝑖𝑚𝑚 =  �  
𝑗𝑗

�(𝑇𝑇𝐹𝐹𝑗𝑗𝑚𝑚

𝑘𝑘

𝑖𝑖. 𝑗𝑗. 𝑘𝑘 ∗
𝑇𝑇𝑇𝑇𝑚𝑚𝑖𝑖.𝑗𝑗.𝑘𝑘

𝑇𝑇𝑂𝑂𝑚𝑚𝑖𝑖.𝑗𝑗.𝑘𝑘
) ∗ 𝐸𝐸𝐸𝐸𝑚𝑚 (2) 

𝑬𝑬𝑬𝑬𝒎𝒎 = 𝑭𝑭𝑼𝑼𝒎𝒎 ∗ 𝑬𝑬𝑪𝑪𝒎𝒎 (3) 

i—ith Household 
j—jth Person in the household 
k—Purpose 
m—Mode 
𝐸𝐸𝑖𝑖𝑇𝑇—Total household daily transport energy consumption (kWh/HH) 
TF m i.j.k—Trip frequency for person j in household i for purpose k with 
mode m (Trips/Day) 
TDm i.j.k—Average trip distance for person j in household i for purpose k 
with mode m (Mile/Trip) 
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TOm
i.j.k—Trip occupancy for person j in household i for purpose k with 

mode m 
EIm—Energy intensity factor for mode m (kWh/mile) 
FUm—Fuel economy factor for mode m (L/mile or KWH/mile) 
ECm—Energy content factor for mode m (kWh/L) 

Transportation Energy Model Development 

The model is trained using the explanatory features of categorical and 
numerical variables from households, trips, and neighborhood 
characteristics. The target feature of the model is transportation energy 
consumption by kilowatt-hour (kWh). K-fold cross-validation was used for 
training the dataset to find the best model parameters and to avoid over-
fitting. Grid search algorithms were used for hyper-parameter (learning 
rates, weights, and thresholds) optimization for the model by searching 
through subsets of the hyper-parameter space to find the sequence to the 
lowest cross-validation error. 

The main challenge in applying ML algorithms is in finding a method 
that achieves both high accuracy and interpretability. In a previous study 
by Amiri et al. [13], the performance of various ML models in predicting 
household transportation energy consumption was evaluated. Tree-based 
ensemble models could compute the global explanation to identify 
influential prediction features; however, the insights are still limited and 
are not useful in assessing the validity of individual predictions. Gradient 
boosting decision tree is a popular ML algorithm and has effective 
applications such as Extreme Gradient Boosting (XGBoost). For this study, 
the household transportation energy consumption prediction is 
reformulated as a XGBoost problem along with SHapley Additive 
exPlanations (SHAP) analysis to gain a better understanding of the model 
and to assess the validity of individual predictions. The XGBoost output is 
then integrated with the Census Bureau’s American Community Survey 
(ACS) marginal sums to produce a synthetic dataset of households. 

Transportation Energy Model Interpretability 

Training time, accuracy, and interpretability are vital to the energy 
prediction model. However, interpretability tends to be neglected in 
many studies, particularly with popular ML models (e.g., XGBoost and 
Neural network) inherent in ‘‘black-box’’ systems. XGBoost is a commonly 
used ML model as the algorithm performs with high accuracy, but the 
decision boundary in a XGBoost problem can be difficult to find if there 
are many features in the model. Without a clear decision boundary, the 
model’s rationale for determining one case to be stable or unstable in a 
power system becomes nearly impossible to interpret. An alternative 
solution lies in drawing out explanations of individual predictions, which 
can be achieved with XAI approaches like SHAP. 
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SHAP is a special case of the Shapley value introduced by Lundberg 
and Lee [18] and is implemented in the current paper to understand the 
insight of the ML prediction model. Classic Shapley value estimation 
derives from coalitional game theory such that a single prediction from 
the ML model is broken down into the component contributions of each 
model input, or feature value. The Shapley value for a given feature value 
represents the marginal contribution of the prediction instance in 
consideration of all possible coalitions of instances. In this way, the 
summed feature contributions for the prediction are equivalent to the 
difference between the predicted value for a given instance and the 
average predicted value for the dataset. For more detail on Shapley value 
estimation methods refer to Molnar [19]. 

SHAP provides a measure of additive feature importance in the form 
of a linear function of binary variables. Additive feature attribution 
methods begin with the original prediction model, or the transportation 
energy model developed by XGBoost (see the previous section) and 
develops an explanation model of simplified inputs based on the original. 
Unlike other XAI methods like LIME, SHAP satisfies all desirable 
properties for additive feature attribution methods [18]. Additionally, 
Shapley value estimation methods like SHAP guarantee the fair 
distribution of feature contribution for a given prediction instance. 

For the above reasons, the current research implements SHAP to 
explain the output for the transportation prediction model with a SHAP 
summary plot for the marginal contribution of each feature on the model 
output and SHAP partial dependence plots to analyze the interaction 
effects for feature pairs found to have greater contributions to the 
prediction in the SHAP summary plot (see the Results and Discussion 
Section for the Transportation Energy Model). 

Synthetic Household Dataset 

The 2015 DVRPC HTS household data is sampled from Traffic Analysis 
Zones (TAZs) within the Delaware Valley region, and the ACS census data 
is drawn from geographically larger Minor Civil Divisions (MCDs) in order 
to serve as controls for the synthesized TAZs. The PopGen 2.0 software 
package is applied for producing the synthetic population. The PopGen 
algorithm takes in the ML output household samples as a joint probability 
distribution across categorical features. ACS data is drawn on the scale of 
Minor Civil Division (MCD) and TAZ numerical totals for each respective 
subdivision. MCDs are significantly larger than TAZs, such that numerous 
TAZs are contained in each MCD. Each sample is given a weight according 
to variable prevalence in the full synthesized population through an 
Iterative Proportional Updating (IPU) algorithm in the PopGen software. 
The variables are selected according to which HTS features have 
corresponded marginal columns in the ACS dataset, and conversely the 
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sample variables are chosen by SHAP for feature importance. The 
resulting output is a synthetic dataset with the number of household and 
person samples equivalent to the region’s total number of households and 
persons. Each sample contains information on energy consumption in 
daily kilowatt-hour (kWh) and the sample location in terms of TAZ. 

Household size, household workers, and number of vehicles per 
household make up the categorical sums per TAZ, and the total number 
of households and population count per MCD comprise of the region 
marginal totals. Daily transportation energy consumption in kWh is 
appended to the sample at the TAZ level. The synthesized dataset of the 
total household transportation energy consumption per TAZ is aggregated 
by MCD and for the entire county. 

Forecast Scenarios 

The DVRPC Greater Philadelphia Future Forces provides a series of 
potential outcomes for the Delaware Valley Region based on the 
interaction between population, employment, urban and transportation 
infrastructure development, income per capita, and other relevant 
variables. These “what-if” scenarios are exploratory and mostly 
qualitative possibilities for the region. One of the potential future 
forecasts for Philadelphia is entitled “Enduring Urbanism” and describes 
an acceleration of urbanism into 2045. In this scenario, population and 
employment opportunities become disproportionately concentrated in 
urban areas. In turn, public transit and pedestrian developments are 
prioritized and more sustainable travel modes are widely accessible to 
residents. The corresponding downside is that the flow of new residents 
leads to gentrification, with lower income households being pushed into 
now fiscally distressed suburbs. 

From the Enduring Urbanism forecast, this study constructs a base 
case and two scenarios. The first scenario represents a more optimistic 
interpretation of the Enduring Urbanism future in terms of more 
walkable urban areas and increased public transit use. Scenario I only 
focuses on impacts related to transportation energy use for households. 
Scenario II, in contrast, analyzes the effect on gentrification as described 
in the forecast. The descriptions of each of the Enduring Urbanism 
scenarios are described in the following below sections. 

Base Case 

In the Enduring Urbanism forecast, population increases by 17% from 
the year 2016 to 2045. The base case assumes a proportional change in 
population across TAZs for a total of 1.82 million persons residing in 
Philadelphia County in the year 2045. The Enduring Urbanism forecast 
has no quantitative predictions on the change in number of households 
for Philadelphia. As the average household size for Philadelphia County is 
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2.55 persons per household [20], the study assumes this ratio will stay 
consistent in the base case and the number of households will also 
increase by 17% for a total of 713,725 households in the region. For the 
DVRPC HTS of the transportation model, the study alters the numerical 
population and household variables of the sample according to these 
assumptions. However, all other variables remain constant in the energy 
use estimation such that the added households will have a proportional 
per capita increase if they are represented as marginal totals per 
subdivision and kept constant if they are not. 

The transportation energy use totals are aggregated according to three 
types of geographic subdivisions for Philadelphia County: Traffic Analysis 
Zones (TAZs), Minor Civil Divisions (MCDs), and Public Use Microdata 
Areas (PUMAs). There are 688 TAZs, 17 MCDs, and 11 PUMAs within 
Philadelphia County. In order to minimize error, this study refrains from 
converting between geographic units when altering datasets according to 
scenario assumptions as the type of subdivision varies across energy 
usage sample data and the subdivision categories frequently overlap (i.e., 
do not have a perfect one-to-one correspondence). 

Scenario I 

Implementation of the 30th street station development 

The first scenario analyzes the effects on household transportation 
energy use given the successful implementation of the 30th Street Station 
Development in Philadelphia. This development proposes to build a 100-
acre neighborhood over the rail yards and enhance the connectivity of the 
existing 30th Street transit station. The District Plan aims to accommodate 
20 to 25 million passenger trips, provide housing for up to 10,000 new 
residents and support up to 40,000 new jobs. The Technical Report 
envisions that this development, in addition to the concentration of 
employment opportunities and education opportunities in urban areas, 
will result in a shift in primary transportation modes for Philadelphia. 
The current study assumes that the most significant change in travel 
modes for the 30th Street Station Development will be within a 30-min 
commute to the TAZ containing the 30th Station District. Notably, only the 
radius of a public transit, walking, or biking commute are considered 
when selecting the study area as the Technical Report predicts a dramatic 
reduction in the use of personal vehicles and restricted automobile traffic 
in the inner-city. This region is approximately contained in three MCD 
neighborhoods: Central, South, and University/Southwest. These 194 TAZs 
are filtered from the 688 TAZs in Philadelphia County through the 
TravelTime QGIS application. 

The first step in constructing the scenario based on the projected 
changes involves the altering of the DVRPC HTS for the households 
sampled from the target area TAZs. The dataset is adjusted to account for 
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the 10,000 incoming residents inhabiting the 30th Station District TAZ and 
the 40,000 newly employed residents evenly distributed throughout the 
study area of the three MCDs. For all other variables found significant 
from the SHAP analysis, a proportionality table is applied to increase the 
numerical sample values according to the number of new households. As 
the DVRPC HTS dataset has a normal mean distribution across variables, 
the categorical samples are not altered. Originally there are 8310 samples 
for all of Philadelphia County. Out of this, the study filtered 696 samples 
contained in the target area and appended 157 new samples to account 
for the increased proportion of different travel modes. 

The primary transportation mode per household sample for daily trips 
(HTS variable name: MODE) is altered in accordance with the predicted 
increase in transit ridership by 75%. Walking and biking modes increase 
by 150% compared to 2010. Subsequently, the number of daily household 
motorized trips (HH_MO_TRIPS), non-motorized trips (HH_NM_TRIPS), 
daily aggregated model travel time (Model_TravTime), and number of 
bikes per household (BIKE) change in accordance with the changes in 
transportation mode. See Supplementary Tables S1–S3 for more 
information on the mentioned variables. 

Scenario II 

Disappearance of mixed-income neighborhoods 

For the second scenario, the study investigates the effect of gentrification 
on household transportation energy use. The DVRPC Technical Report 
predicts middle- and lower-income households will be pushed out of core 
urban areas for the Delaware Valley region to outlying suburbs. This what-
if scenario outlines a problem area for the DVRPC: these inhabitants will be 
pushed to low-density suburban areas that have dwindling employment 
opportunities and a neglected transportation infrastructure, and in turn 
Philadelphia County will face the negative effects of reduced income 
diversity in its neighborhoods. Formerly mixed-income areas will become 
high-income, and the currently low-income areas will remain low-income 
to demonstrate the forecasted income stratification. 

According to the census bureau’s definition of an urban geographical 
area, Philadelphia County is thoroughly urbanized as each TAZ contains 
at least 1000 people per square mile. As the technical report only referred 
to gentrification in the geographical context of urban versus rural areas, 
the study area includes all of Philadelphia County. 

We begin the setup of our scenario in terms of PUMA regions, of which 
there are 11 total PUMAs for Philadelphia County. First, we will identify 
the income status (low-, mixed-, or high-income) for each PUMA region 
based on the DVRPC’s 2018 median income data. Currently there is no 
consensus for what quantifies a neighborhood as a mixed-income one. 
The study applies the following definition for classifying the income 
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group of Philadelphia County PUMAs such that households are divided 
into three groups: those below 80%, between 80% to 120%, and above 
120% of the Area Middle Income (AMI) [21]. If each of these groups make 
up to 20%, but no more than 50%, of total households in the region, then 
the PUMA is classified as a mixed-income area. In this way, a mixed-
income PUMA demonstrates that a wide variety of income groups are 
represented in the neighborhood and no one group has a dominant 
presence. A high-income PUMA will have over 50% of households that 
have median incomes greater than 120% of the AMI, and a low-income 
PUMA will have over 50% of households that have median incomes less 
than 80% of the AMI. 

There are various approaches to modeling displacement due to 
gentrification, from using lags in housing prices to studying the 
geographic proximity of neighboring tracts [22]. Under the Enduring 
Urbanism forecast assumptions, gentrification is primarily caused by the 
market’s unwillingness to meet the demand for mixed-income housing 
with the negative effects compounded by the lack of new housing 
developments. From this, the study assumes that there is high local excess 
demand such that neighboring high-income neighborhoods are 
essentially “crowding out” former residents of mixed-income households 
[23]. To implement this, we take the mixed-income PUMAs and change the 
distribution of the household samples’ median incomes to match that of a 
neighboring high-income PUMA that contains a relatively high number of 
intersecting TAZs. 

For example, PUMA 3209 is high-income and PUMA 3211 is mixed-
income due to the distribution of household median incomes in each 
respective region. As both PUMAs share a border, the distribution of 
household income in the energy consumption sample is manually altered 
such that PUMA 3211 has an identical distribution of income groups to 
high-income PUMA 3209. The post-scenario PUMA 3211 will have 21% of 
households earning less than 80% of the AMI, 11% earning between 80% 
and 120% of the AMI, and 68% earnings over 80% of the AMI. 

RESULTS AND DISCUSSION 

Transportation Energy Model 

After creating a list of all the energy consumption-related variables, 
the study conducted a multi-step screening process and eliminated 
correlated or redundant variables to minimize collinearities. Variables 
with little theoretical relevance to transportation energy (e.g., the method 
of transit payment) or those with little variation (< 5%) were removed 
from the dataset. Also, variables that are directly used in transportation 
calculations (e.g., household travel distance) were removed to eliminate 
redundancies. As a result, 31 continuous and 12 categorical variables 
were selected to be included in the analysis. All the neighborhood 
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characteristic variables (e.g., population, the total number of households, 
number of employees, etc.) are standardized, and the categorical 
variables are converted to binary variables. 

The XGBoost model is implemented using the Python 3 scikit-learn 
function. Grid-search is used to optimize the hyperparameters. The MSE, 
MAE, and R2 values are then calculated for both the training and test 
datasets across the developed XGBoost model. These results are 
corresponded to models that are trained using the best-obtained 
hyperparameters. 

With respect to transportation energy consumption, the results show 
that the XGBoost model performs well. The results are summarized in 
Table 1 for the MSE, MAE, and R2 of the training and test datasets. 

Table 1. Cross-validation results for the XGBoost model. 

 
Training Test 

MSE MAE 
 

R2 
 

MSE 
 

MAE 
 

R2 
 

XGBoost 2.045 0.90 0.92 2.90 0.985 0.87 

The global and local interpretability afforded by SHAP techniques 
allows urban planners and engineers to understand and trust the results 
of their ML-based energy predictions. The study applies a SHAP summary 
plot for the current study’s transportation energy model to understand 
the importance of model features in terms of the range of their effect over 
the dataset (see Figure 1). The color of each dot in the SHAP plot indicates 
how change in the value of a feature affects the change in energy 
consumption for the household according to the gradient scale provided 
on the y-axis. The SHAP x-value for a given feature represents the effect 
that feature has on the transportation energy prediction model. The x-axis 
units explain the XGBoost model’s change of margin output in the unit of 
log-odds. Overlapping points are scattered vertically, providing the 
distribution of SHAP values for each feature. 

The model features are sorted according to their predictive power such 
that the highest feature of household motorized trips (HH_MO_TRIPS) is 
the most important predictor of transportation energy consumption, with 
household travel time (Model_TravTime) as the second highest predicting 
feature. From Figure 1, the colors indicate that being in a household with 
more frequent motorized trips and longer travel times increases the 
chances of consuming more transportation energy, and households with 
fewer motorized trips and shorter travel times have a higher chance of 
using less transportation energy. The number of household non-
motorized trips (HH_NM_TRIPS) has a negative impact on the model’s 
prediction of energy use (i.e., a higher number of non-motorized trips 
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increases the chances of a lower transportation energy use prediction in 
the model). Conversely, the total number of vehicles per household 
(OP_VEH) increases the prediction. Other important features are the 
number of total vehicles per household (OP_VEH), household size 
(HH_SIZE), primary travel mode by private vehicle (MODE_5), number of 
household workers (HH_WORK), number of bus stops within a TAZ 
(BUSSTOP) and the household’s home-to-work travel type (TOUR_TYPE_1). 

 

Figure 1. SHAP summary plot for feature importance. 

While a SHAP summary plot gives a general overview of each feature, 
a SHAP partial dependence plot shows the marginal effect on the model 
prediction in terms of the interaction effects between two features. In this 
way, partial dependence plots demonstrate whether the relationship 
between the target feature and another selected feature is linear, 
uniform, or more complex. 

With a SHAP partial dependence plot, we investigate the effect of the 
number of household motorized trips on the transportation energy use 
prediction model (Figure 2). The x-axis is the value of the selected feature 
(HH_MO_TRIPS), and the y-axis is the Shapley value for the household’s 
transportation energy consumption with units in log-odds. The upward 
slope demonstrates that there is a positive trend between number of 
motorized trips and energy consumption. 

Interaction effects drive the vertical dispersion of Shapley value with 
the gradient color bar ranging from blue to red for the feature of 
household travel time (Model_TravTime). Households with a low number 
of motorized trips that require longer travel times are less likely to have 
high energy use predictions (as shown by the red data points on the lower 
right-hand side of Figure 2) when compared to households with a high 
number of motorized trips and shorter travel times. 
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Figure 2. SHAP partial dependence plot demonstrating the marginal effect of the number of household 
motorized trips (HH_MO_TRIPS) and travel time (Model_TravTime) on the outcome of the transportation 
energy prediction model. 

For further analysis, the study analyzes the marginal effect of the 
number of household non-motorized trips (HH_NM_TRIPS) and travel 
time on the model with a SHAP partial dependence plot (Figure 3). Figure 
3 demonstrates that for households with two to five non-motorized trips, 
the predicted outcome of the transportation energy model is lower as the 
Shapley value for most of the data points are below zero. When there are 
zero non-motorized trips for the household, longer travel times lead to 
higher model outputs. 

 

Figure 3. SHAP partial dependence plot demonstrating the marginal effect of the number of household non-
motorized trips (HH_NM_TRIPS) and travel time (Model_TravTime) on the outcome of the transportation 
energy prediction model. 

In Figure 4, the upward slope indicates that the higher the number of 
total trips for the household (HH_TOT_TRIPS), the higher the prediction in 
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energy consumption. The figure suggests there is little interaction 
between number of total trips and number of operating vehicles 
(OP_VEH). 

 

Figure 4. SHAP partial dependence plot demonstrating the marginal effect of the total number of household 
trips (HH_TOT_TRIPS) and number of operating vehicles per household (OP_VEH) on the outcome of the 
transportation energy prediction model. 

PopGen is applied for producing the synthetic population output of 
transportation energy consumption. Based on the feature importance 
results from SHAP and available ACS data, variables are selected at the 
TAZ and MCD level. Household size, household workers, and number of 
vehicles per household make up the categorical sums per TAZ, and total 
number of households and population per MCD comprise the region 
marginal totals. Daily transportation energy consumption in kWh for both 
the base case and the scenarios are appended to the sample at the TAZ 
level. The synthesized dataset of the total household transportation 
energy consumption per TAZ is aggregated by MCD and for the entire 
county. Analysis of the PopGen results is continued below in the Scenario 
Results section for the scenario I study area MCDs (Central, South, 
University-Southwest) by TAZ. Although the one-way ANOVA test and 
SHAP method incorporate scenario II data at the TAZ level, descriptive 
statistics and heat maps of energy consumption are aggregated by MCD 
and by income status for that scenario due to the difficulty in discerning 
geographic patterns in energy consumption at such a disaggregate scale. 
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Scenario Results 

Base case 

Base case for scenario I 

The base case for scenario I assumes an increase in population based 
on projections for the year 2045 and the successful implementation of the 
30th Street Development. Per capita transportation energy use is 
aggregated over TAZs in terms of daily kWh (M = 78.48, SD = 39.08). 

Base case for scenario II 

The analysis of scenario II centers on changes in household income 
distribution for all of Philadelphia County. In this scenario, the base case 
assumes the population increases proportionally throughout the study 
area. Base case energy consumption is calculated by daily per capita kWh 
(M = 50.85, SD = 235.43). 

With respect to energy use by MCD, Central is in the highest quantile 
of per capita energy consumption at 123.48 kWh/day and North consumes 
the least per capita energy at 10.27 kWh/day. 

Scenario I results 

A one-way analysis of variance (ANOVA) is calculated to compare the 
two treatment groups of base case energy use and scenario I energy use. 
The analysis is significant F(1, 380) = 61.79, p < 0.0001; scenario I 
households with the forecasted shifts in dominant travel modes consume 
less transportation energy per capita (M = 40.96, SD = 27.71) than base case 
households (M = 50.85, SD = 32.36). 

Transportation energy use declines by nearly 30% due to the shift in 
dominant travel modes. Of the three MCDs, Central has the highest levels 
of energy use for both the base case and scenario I. At the same time, 
Central undergoes the sharpest decline in energy consumption at 
approximately −14 million kWh/day, thus contributing to nearly 70% of 
the change in total energy for the study area. However, when comparing 
energy consumption across TAZs, the results for Central demonstrate 
more diverse patterns. A significant majority of TAZs in the 10th 
percentile of scenario energy consumption are from the Central MCD, yet 
TAZs in Central are simultaneously prevalent in the top 90th percentile. 
South also contains TAZs in the top 90th percentile with no presence in 
the lowest 10th percentile. University-Southwest uses the least amount of 
transportation energy at 16 kWh per capita and has minimal presence in 
either extreme of energy consumption for both the base case and scenario 
I. Table 2 provides a comparison of the base case and scenario I energy 
outputs for the study area. 
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Table 2. Base case and scenario I comparison with total daily energy (kWh/day) and per capita energy 
(kWh/day/person) for study area MCDs (aggregated across TAZs). 

MCD 
Base Case 

Energy 
Base Case Energy 

Per Capita 
Scenario I 

Energy 
Scenario I Energy 

Per Capita 

Central 19,391,468 123 4,839,702 30 

South 7,677,989 53 2,892,468 20 

University/Southwest 6,017,934 58 1,686,878 16 

The change in energy use from the base case is displayed in Figure 5 
with each study area TAZ assigned a value based on an equal quantile 
legend for daily per capita decrease. The Central MCD contains the highest 
concentration of TAZs in the 75th quantile of decrease of daily per capita 
energy use. 

 

Figure 5. Scenario I change in transportation energy consumption heat map for study area MCDs. 

The synthesized output is put through SHAP for the TAZs in the top 
90th and lowest 10th quantile of energy consumption. For all three MCDs, 
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the variable of number of motorized trips per household is the strongest 
explanatory feature of energy consumption, with daily aggregated model 
travel time the second highest feature. In Central, population is the third 
most important explanatory feature in SHAP, whereas for South and 
University-Southwest transportation energy use is better explained by 
travel mode (i.e., private automobile, van, or truck). Refer to Figures 6–8 
for the SHAP plots of Central, South, and University-Southwest, 
respectively. 

 

Figure 6. SHAP results for scenario I transportation energy use in the Central MCD. 

 

Figure 7. SHAP results for scenario I transportation energy use in the South MCD. 
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Figure 8. SHAP results for scenario I transportation energy use in the University-Southwest MCD. 

Notably, scenario I did not involve a dramatic alteration of the data; 
only 157 household samples were appended to a dataset originally 
containing 8310 samples for the county, and the change in population and 
household count was disproportionately focused on the 30th Street 
Station Development. Nonetheless, there was a significant decrease in 
transportation energy consumption for all of Philadelphia County (48 
daily kWh per capita in the base case to 34 daily kWh per capita in 
scenario I). The scenario indicates that the 30th Street Station 
Development can contribute significantly to meeting Philadelphia’s GHG 
emission reduction benchmarks given the participation of the public in 
utilizing the new transit developments as primary travel modes over 
private motorized vehicles. 

Scenario II results 

Scenario II resulted in an approximate 11% decrease in transportation 
energy use, with daily per capita consumption at 42 kWh for the county. 
The one-way ANOVA test shows that the base case and scenario II are 
significantly different in terms of transportation energy consumption 
Philadelphia County F(1, 860) = 4.52, p =0.03. Scenario II households 
consume less transportation energy per capita (M = 146.24, SD = 286.49) 
than the base case households (M = 51.17, SD = 33.06). 

For simplicity, the study refers to high-income PUMAs in scenario II 
that were previously mixed-income PUMAs in the base case as “HM” to 
demonstrate that the household income distribution was manually 
altered in the scenario to represent the gentrification process. “H” 
represents high-income PUMAs that were not previously mixed-income 
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and “L” represents low-income PUMAs, either for the base case or the 
scenario. 

For both the base case and scenario II, high-income (H) PUMAs have 
the greatest total consumption and low-income PUMAs the least. 
However, low-income (L) PUMAs consume the most transportation 
energy on a per capita basis at nearly 75% of the total. High-income (H) 
PUMA energy use adds up to approximately 55 million kWh, or 74% of the 
county total. In the base case and scenario II, both mixed-income (M) and 
formerly mixed-income (HM) PUMAs consume the least amount of energy 
per capita, with the formerly mixed-income (HM) group experiencing a 
slight decrease in scenario II. The results are outlined in Table 3 below. 

Table 3. Base case and scenario II transportation energy totals and per capita use with respect to PUMA 
income status. 

PUMA Income 
Status 

Base Case 
Energy 

Base Case 
Energy 

Per Capita 

PUMA Income 
Status 

Scenario II 
Energy 

Scenario II 
Energy 

Per Capita 

L 21,886,053 99,031 L 18,617,947 115,482 

M 24,943,129 9,980 HM 22,846,325 8962 

H 34,682,410 27,689 H 31,283,518 29,638 

Totals: 81,511,592 136,700  72,747,790 154,081 

Figure 9 shows the decrease in transportation energy for scenario II 
with TAZs aggregated by MCD rather than PUMA for the sake of 
comparison with scenario I. Similar to scenario I, the most dramatic drop 
in energy use is attributable to the Central MCD. The MCDs surrounding 
Central (University-Southwest, South, and Lower South) are all in the top 
50th quantile of change in energy consumption. 
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Figure 9. Scenario II change in transportation energy consumption heat map for Philadelphia County. 

In order to further investigate the impact of changes in income group 
on energy consumption, the study includes a secondary one-way ANOVA 
test for the low- (L), formerly mixed- (HM), and high-(H) income groups 
energy consumption in scenario II. The results demonstrate significant 
differences F(2, 483) = 4.84, p =0.008. A post-hoc Tukey-Kramer analysis 
for pairwise comparisons (see Table 4) indicates that the L group 
consumes more per capita energy than their high-income counterparts. 
The H and HM groups are not significantly different in terms of energy 
use, as expected given their matching income distributions and the initial 
ANOVA test results. Lastly, the L group consumes more per capita energy 
than the HM group. 

Table 4. Tukey-Kramer test for scenario II with treatments as PUMA income status and value as scenario II 
transportation energy for TAZs in Philadelphia County. 

Income Status Diff Lower Upper q-value p-value 

H L 55135.23 6994.18 103276.29 3.81 0.02 

H HM 4485.34 −46721.91 55692.60 0.29 0.90 

L HM 59620.58 7084.35 112156.80 3.77 0.02 

The SHAP results for scenario II indicate that the number of household 
motorized trips and daily aggregated model travel time are the strongest 
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explanatory features for transportation energy consumption in 
Philadelphia County (Figure 10). Household number of non-motorized 
trips also demonstrates a sizable impact on energy use for the region. The 
lower income (annual household income <$35K) feature is also present in 
the model, albeit with the least impact of the 20 SHAP features. Notably, 
the variable for household income in the SHAP analysis only has two 
categories (annual household income <$35K and annual household 
income >$35K), whereas the setup for scenario II involves changes to the 
dataset at a more detailed numerical scale. Thereby, the analysis of 
Shapley values does not provide in-depth insight on the role income 
distribution changes had on energy consumption. 

 

Figure 10. SHAP results for scenario II transportation energy use. 

From the above results, gentrification in the Enduring Urbanism 
forecast leads to a decrease in transportation energy use for the county. 
In general, low-income TAZs consume more per capita energy, suggesting 
that the decline in total energy consumption is attributable to the 
scenario’s reduction of households that earn less than 80% of the AMI. 
This result is corroborated by previous research that indicates low-
income households have greater energy burdens than their higher-
income counterparts [24]. It is important to note that mixed-income 
PUMAs consistently consume less than 1% of the total per capita energy, 
both before and after the change in income distribution (M and HM). This 
implies a potential relationship between neighborhoods with greater 
income diversification and reduced rates of transportation energy use. 
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CONCLUSION 

This study implemented an integrated bottom-up approach using the 
DVRPC HTS and the ACS datasets to estimate the impact of forecasted trends 
in household-level behavior on transportation energy consumption for 
Philadelphia. Through the application of a ML XGBoost algorithm for 
increased predictive model reliability, the study compensates for the 
weaknesses in bottom-up energy models and successfully produced a 
comprehensive synthetic population for a large region. Applying this 
method as a model for Philadelphia County offers insights on energy 
consumption patterns in the DVRPC Enduring Urbanism forecast. The 
results suggest that the proposed 30th Street Station Development and the 
resulting shift in dominant travel modes will be responsible for the strongest 
reduction of transportation energy use. Gentrification and the absence of 
mixed-income neighborhoods will also lead to a decline in transportation 
energy consumption. The findings demonstrate that mixed-income PUMAs 
are associated with low transportation energy consumption in the model. 
The relationship between the income diversification of neighborhoods and 
reduced transportation energy use warrants further research. Given the 
Enduring Urbanism forecast is consistent with demographic and 
socioeconomic trends in 2045, the Central MCD is a critical area of focus for 
meeting long-range plan energy benchmarks. Central consumes the most 
total energy across scenarios and demonstrates unique behavior in terms of 
how population density affects transportation energy use at the TAZ level. 
Moreover, the current research proposes a methodological template for 
applying reliable energy models to synthesized data in a scenario-based 
context. With this approach, future research can apply this method for 
residential, commercial, and other energy use models in the context of 
predictive scenario planning. In this way, urban planners and policy makers 
can target potential problem areas and strategize on sustainability 
initiatives with a high level of quantitative detail and spatial resolution. 
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