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ABSTRACT 

This study aims to develop a highly efficient adsorbent specifically 
designed to remove targeted organic pollutants, focusing on endocrine 
disruptors. The pollutants of interest included bisphenol S (BPS), triclosan 
(TCS), and 2,4,6-trichlorophenol (TCP), which are commonly found in 
aqueous solutions. The surface of nanocellulose (NC) was modified with 
poly-β-cyclodextrin (p-βCD) using epichlorohydrin as a cross-linker. The 
modified NC-p-βCD adsorbent exhibited remarkable adsorption 
performance due to the inclusion properties of β-cyclodextrin (βCD) and 
the advantages of NC. Comprehensive characterization techniques, 
including Fourier Transform Infrared Spectroscopy (FTIR), Nuclear 
Magnetic Resonance (NMR) Spectroscopy, Scanning Electron Microscopy 
(SEM), Thermogravimetric Analysis (TGA), and Energy Dispersive X-ray 
Spectroscopy (EDS) confirmed the successful modification and provided 
insights into the structural features of p-βCD and NC-p-βCD. The 
percentage removal of the target pollutants was quantified using UV-
visible spectroscopy, and their adsorption kinetics were studied. The NC-
p-βCD demonstrated impressive removal efficiencies with maximum 
cumulative percentages of 28% for BPS, 74% for TCS, and 58% for TCP. The 
adsorption process followed Langmuir adsorption kinetics, suggesting 
monolayer adsorption on a homogeneous surface. This study presents a 
promising adsorbent by modifying NC with p-βCD to remove organic 
pollutants effectively. The findings contribute to developing sustainable 
water treatment methods using NC-based adsorbents. 
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INTRODUCTION 

Water, an indispensable component of life [1], faces a significant 
challenge of pollution caused by various harmful and toxic contaminants 
due to their inappropriate disposal [2,3]. The presence of these 
contaminants in water has raised serious concerns due to their 
detrimental impact on human health and the environment [4,5]. These 
contaminants can be broadly classified as organic and inorganic 
impurities [6,7]. The organic pollutants commonly found in water include 
dyes, pharmaceuticals, phenolic compounds, surfactants, pesticides, and 
petroleum, while inorganic contaminants comprise arsenic, fluorides, and 
heavy metals [8,9]. Exposure to certain organic pollutants such as 
bisphenol S (BPS), bisphenol A (BPA), triclosan (TCS), and chlorinated 
phenols such as 2,4,6-trichlorophenol (TCP) (Figure 1) can lead to various 
health problems, including breast cancer, kidney damage, and endocrine 
disruptions [10,11]. Particularly, endocrine-disrupting chemicals have 
posed a serious threat to us and other living objects in nature. Endocrine-
disrupting chemicals mimic, function, and block any hormones in living 
systems, disrupting the natural processes of the endocrine systems [12]. 
Such disruptions may cause serious health issues and abnormalities in 
vertebrates, including humans [13]. Endocrine-disrupting chemicals can 
be either synthetic or natural compounds [14]. Over 1000 chemicals are 
known to us as endocrine-disrupting chemicals [15]. This manuscript deals 
with a simple removal technique for some endocrine-disrupting 
chemicals. 

 

Figure 1. Chemical structures of (a) bisphenol S (BPS), (b) 2,4,6-trichlorophenol (TCP), and (c) triclosan (TCS). 
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BPS is predominantly present in the modern world in the form of 
plastics [16]. It has been detected in various aquatic bodies like rivers, 
lakes, and oceans [16]. Notably, studies have reported maximum BPS 
concentrations of 0.14 µg/L in the Pearl River (China) and 7.2 µg/L in Indian 
Rivers in 2016 [17,18]. Furthermore, BPS has even been identified in 
pristine environments like the Arctic [19]. 

BPS is an epoxy resin compound containing two hydroxyphenyl groups 
[20]. It is commonly employed in various applications such as packaging 
for baby formula, baby bottles, dental implants, personal care products 
(e.g., makeup, lotion, toothpaste), and meat products, owing to its heat 
tolerance and high photo-resistance [21–24]. However, despite its 
numerous advantages, BPS can give rise to severe health issues, including 
endocrine disruption, upon exposure to the human body [25]. Exposure to 
BPS can occur through microwaving food, and if the monolayer of plastic 
is decomposed by chemicals or other means, food can become 
contaminated by BPS [26]. Additionally, bisphenol polymers, including 
BPS, can enter the body through water [27,28]. Notably, BPS has been 
detected in urine samples of approximately 81% of Asian and American 
individuals, with an average concentration of 2.6 nM [29]. 

Research shows that BPS changes the aromatase expression of the 
estrogen pathway due to its ability to mimic this hormone and interact 
with specific receptors, including estrogen, androgen, and serum proteins 
[30]. Furthermore, an in vivo study has demonstrated that BPS can induce 
adverse effects such as reproductive dysfunction at low doses and even 
depressive symptoms at high doses [31]. Additionally, evidence suggests 
that BPS can impact the nervous system [32] and contribute to various 
health issues, including breast cancer, metabolic disorders, DNA damage, 
and cardiovascular diseases [33–35]. Given these concerns, the removal of 
BPS from water sources is of utmost importance. Filtration has been 
identified as one of the simplest and most effective methods for 
eliminating BPS from water [36]. 

Another notable endocrine-disrupting chemical is TCS, previously used 
as an antimicrobial agent in manufacturing soaps, detergents, cosmetics, 
textiles, toothpaste, and food packaging [37]. However, exposure to TCS 
can be toxic to humans, leading to potential endocrine disruption, cancer, 
and thyroid disease [38]. As a result of its adverse effects, the Food and 
Drug Administration (FDA) decided to prohibit the use of TCS in soap 
products in 2016. However, it is still permitted for use in toothpaste and 
mouthwash [38]. 

Various methods commonly employed to remove TCS include 
ozonation, oxidation, adsorption, and membrane separation [39]. Several 
previous research has already been conducted in this area [40] to remove 
TCS. For instance, Kong et al. utilized polymer-functionalized magnetic 
iron oxides in the adsorption method to remove TCS from wastewater [41]. 
However, this method has been associated with relatively high costs [41]. 
Consequently, there is a need for an alternative approach, and one 
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promising candidate is NC-p-βCD, which offers the advantages of being 
low in cost and easy to prepare. 

TCP, also known as 2,4,6-trichlorophenol, is a prevalent phenolic 
pollutant characterized by the presence of three chlorine atoms attached 
to the phenolic ring at positions 2, 4, and 6 [41]. It is commonly 
encountered in industrial wastewater originating from diverse sectors 
such as coke, petroleum, pesticide, insecticide, pharmaceuticals, paper, 
and food industries [42]. Due to its high toxicity to humans and aquatic 
life, even at low concentrations, TCP poses a significant risk, potentially 
leading to carcinogenic and mutagenic diseases [43]. Consequently, the 
removal of TCP is of utmost importance, and various methods are 
commonly employed for this purpose, including photocatalytic 
degradation, microbial degradation, oxidation, ion exchange, and 
filtration [42]. Among these methods, filtration, specifically adsorption, 
has proven to be one of the most effective techniques for removing TCP 
[42]. Activated carbon is widely used as an adsorbent for TCP removal in 
granular and powdered forms. However, it should be noted that activated 
carbon can be expensive [44]. 

Prior research indicates that adsorbent materials, namely nano-zeolite, 
biochar, and activated carbon, have demonstrated effective utility in 
eliminating BPS, TCS, and TCP, respectively. Nonetheless, these materials 
exhibit certain limitations, as outlined in Table 1. 

Table 1. Various adsorbent materials for phenolic impurity removal using adsorption techniques and their 
drawbacks. 

Impurities Adsorbent Materials Disadvantages 

 
Bisphenol S 

Nano-zeolite Non-recyclable, highcost, and 
environmental pollution [45] 

Carbon nanotubes Preparation process complex [46] 

 
Trichlosan 

Biochar Enviromental pollution [47] 

Carbon black Low adsorption capacity [48] 

Graphene oxide Environmental pollution [49] 

 
 

2,4,6-trichlorophenol 

Activated carbon 
 

High cost and environmental 
pollution [50] 

Mango seed and sodium alginate beads Time consuming process [51] 

In this work, poly-β-cyclodextrin (p-βCD) was prepared by 
polymerization of β-cyclodextrin (βCD) and modified with nanocellulose 
(NC). The resulting modified polymer (NC-p-βCD) was characterized by 
different characterization techniques such as FTIR spectroscopy, NMR 
Spectroscopy, SEM, TGA, and EDS. The schematic diagram for the 
modification of NC with p-βCD is shown in Figure 2. 
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Figure 2. Schematic diagram for the modification of NC with p-βCD. 

The modified nanocellulose (NC-p-βCD) served as a filtration matrix for 
the removal of organic pollutants due to its high adsorbent capacity, small 
size, and specific surface area expansions. This is complemented by the 
inherent benefits of nanocellulose, encompassing eco-friendliness, easy 
modification and functionalization, renewability, thermal resilience, and 
cost-effectiveness [52–54]. The adsorption process is based on the concept 
that BPS, TCS, and TCP all are hydrophobic, and the inside ring of p-βCD is 
also hydrophobic so that these impurities can be entrapped inside p-βCD 
[55–57]. Its efficacy in water purification was determined mainly by 
filtering organic pollutants such as BPS, TCS, and TCP by varying the 
amount of adsorbents and pH. The percentage of cumulative impurities 
removal was increased with an increase in pH and amount of NC-p-βCD 
due to higher interactions between the impurities and adsorbents. To our 
current understanding, this marks the initial instance in which we have 
successfully created a biocompatible adsorbent matrix (NC-p-βCD) 
through covalent bonding and employed it to effectively eliminate 
endocrine disruptors such as BPS, TCS, and TCP. 

MATERIALS AND METHODS 

Materials 

All reagents and solvents were obtained from commercial suppliers 
and used without further purification. Acetone ≥ 99.5%, absolute ethanol 
≥ 99.9%, and isopropanol ≥ 99.5% were purchased from VWR BDH 
chemicals. β-cyclodextrin ≥ 97.0%, deionized water, epichlorohydrin (EPH) 
≥ 99.0%, toluene ≥ 99.8%, sodium hydroxide (NaOH), hydrochloric acid 
(HCl), BPS ≥ 98.0%, TCS ≥ 99.0%, and TCP ≥ 97.0%, were obtained from 
Sigma-Aldrich, USA. NC was obtained from Blue Goose Biorefineries Inc., 
Canada. Nitrogen (N2) gas cylinders were obtained from Airgas company. 

Synthesis of Water-Soluble β-Cyclodextrin Polymer 

This synthesis was performed using the literature method [58] with 
slight modifications. Briefly, about 2 g of βCD was dissolved in 5 mL of 15% 
aqueous NaOH solution at 35 °C by stirring for 2 h. To the alkaline solution 
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of βCD, 2 mL of toluene was added with constant stirring, and the mixture 
was kept at the same temperature for 2 h. Next, 5 mol% of EPH (3.92 mL) 
was added to the mixture and kept for stirring for an additional 3 h. The 
resulting precipitate was neutralized to pH 7 by adding 2 M HCl solution 
dropwise. Once the reaction was complete, the solution was precipitated 
in isopropanol, and the solid was collected by filtration. The collected solid 
was dried in a freeze dryer, resulting in a powder form 1.92 g of p-βCD. 

Modification of Nanocellulose with p-β-Cyclodextrin 

First, 20 mL of 8% NC was dissolved in 30 mL of distilled water 
(equivalent to 1.6 g of NC) in a round-bottom flask. The pH of the solution 
was adjusted to 9.5 by adding a 0.1 M NaOH solution. As a precaution, the 
mixture was purged with N2 gas slowly. Subsequently, two equivalents of 
EPH (1.5 mL) were added, and the temperature was maintained at 50 °C 
for a duration of 2 h. After that, 1.6 g of p-βCD was introduced into the 
reaction mixture, which was then stirred overnight. On the following day, 
the mixture underwent thorough washing with a copious amount of 
isopropanol, followed by drying in a freeze dryer, producing a powder 
form of 2.05 g of NC-p-βCD. 

Characterizations of Materials 

The NC, p-βCD, and NC-p-βCD were characterized by different 
spectroscopic and microscopic techniques such as FTIR Spectroscopy, 
NMR Spectroscopy, TGA, SEM, and EDS. The FTIR spectroscopy of the 
sample was conducted using a Nicolet 6700 Thermo-Scientific FTIR 
spectrometer equipped with a DLaTGS detector and an XT-KBr beam 
splitter. The spectra were recorded in the range of 400–4000 cm−1. The 
NMR spectroscopy was performed using a JEOL ECS-type nuclear magnetic 
resonance spectrometer with a frequency of 400 MHz. The weight loss of 
the NC and NC-p-βCD compounds at different temperatures was measured 
using the TGA technique. The TGA analysis was successfully carried out 
using the Mettler Toledo thermogravimetric analyzer TGA/DSC3+. The 
surface morphology of the dried NC and NC-p-βCD samples was examined 
using a JEOL scanning electron microscope (JSM 7000F) combined with an 
EDS system. The SEM images were captured at different magnifications to 
study the surface morphology of these samples. Furthermore, the 
concentrations of impurities were determined using a Perkin Elmer Inc. 
double-beam UV-Visible spectrophotometer covering the wavelength 
range of 200 to 700 nm. 

Adsorption Techniques and Characterizations 

BPS, TCS, and TCP solutions were prepared at various pH levels ranging 
from 2 to 10. These solutions were individually passed through 100 
milligrams (mg) of NC (control) and NC-p-βCD samples to determine the 
percentage (%) removal of these impurities. The adsorption of impurities 
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was measured using UV-visible spectroscopy techniques. Additionally, the 
solutions were passed through varying amounts of adsorbent material (10 
to 100 mg), and kinetic studies were conducted. Furthermore, to evaluate 
the recyclability of the NC-p-βCD adsorbent, a test was performed over 
four consecutive cycles. In each cycle, a freshly prepared 4 mL of 10−4 M 
concentration of BPS at pH 8.5 was passed through 100 mg of the 
adsorbent. After each cycle, the adsorbent was thoroughly washed three 
times using deionized (DI) water, and the sample was dried before 
introducing another 4 mL of 10−4 M BPS solution for the subsequent cycle. 
This procedure allowed for effectively assessing the adsorbent’s capability 
to remove BPS in a repeated usage scenario. 

RESULTS AND DISCUSSION 

In this study, the characterization of βCD and p-βCD was performed 
using FTIR and NMR spectroscopy. Supplementary Figure S1 in the 
Supporting Information displays the FTIR spectra of βCD and p-βCD. The 
FTIR spectrum of βCD exhibits a broad peak at 3300 cm−1 corresponding to 
hydroxyl (-OH) stretching and a prominent peak at 2920 cm−1 attributed to 
C-H (symmetric and asymmetric stretching vibrations) bonds within the 
molecule. The presence of adsorbed water in βCD is indicated by the peak 
at 1640 cm−1, corresponding to H-OH deformation. The peaks observed at 
1150 cm−1 and 1020 cm−1 also represent the C-H overtone and C-O 
stretching frequencies, respectively. The peak at 1150 cm−1 also signifies 
the C-O-C vibration. These peaks align with values reported in the 
literature [59,60]. Following the polymerization of βCD, a slight shift in 
peaks is observed, but no new peaks emerge, as p-βCD and βCD share 
similar functional groups. The shift from 2920 cm−1 to 2930 cm−1 is 
attributed to overlapping C-H peaks from EPH with βCD. 

Supplementary Figure S2 (Supporting information) presents the 1H-
NMR spectroscopy of p-βCD in deuterium oxide (D2O) solvent. The 1H-NMR 
spectrum of p-βCD exhibits six distinct peaks ranging from 1.1 ppm to 4.9 
ppm. These peaks include a singlet at 4.9 ppm, a doublet at 3.5 ppm, 
another at 3.4, and a doublet at 1.1 ppm, corresponding to different proton 
environments of p-βCD indicated in Supplementary Figure S2. 
Additionally, there are peaks at 3.7 ppm (singlet) and 3.8 ppm (triplet), 
which originate from the epichlorohydrin group. The observed peaks align 
perfectly with the different proton environments of p-βCD, confirming the 
polymerization of βCD through epichlorohydrin as a cross-linker [59]. 

Supplementary Figure S3 in the Supporting Information illustrates the 
FTIR spectroscopy analysis of NC and p-βCD-modified NC (NC-p-βCD). In 
the FTIR spectrum of NC, a broad peak at 3340 cm−1 corresponds to 
hydroxyl (-OH) stretching, while the intense peak at 2910 cm−1 represents 
C-H stretching vibrations within the molecule. The H-OH deformation 
peak at 1620 cm−1 in both NC and NC-p-βCD persists after synthesis due to 
water molecule physisorption on the surfaces. The peak at 1160 cm−1 in 
NC-p-βCD also signifies the C-O-C vibration. These peaks align with values 
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reported in the literature [61]. Additionally, new peaks resembling those 
associated with p-βCD, as described in the previous section, are observed, 
confirming the modification of NC with p-βCD. 

 

Figure 3. Thermogravimetric analysis of NC and NC-p βCD adsorbents. 

Furthermore, the TGA technique was employed to study the weight loss 
of NC and NC-p-βCD samples at different temperature ranges, as depicted 
in Figure 3. The weight loss analysis revealed an initial weight loss of 
approximately 10% in NC and NC-p-βCD samples at temperatures ranging 
from 25 °C to 225 °C, primarily attributed to moisture loss. Subsequently, 
a weight loss of around 65% occurred from 225 °C to 320 °C, which can be 
attributed to hemiacetal loss [62]. The total weight loss reached 98% at  
495 °C, resulting from the decomposition of the polymer backbone as well 
as loss of moisture and hemiacetal. However, the NC-p-βCD sample 
exhibited enhanced thermal stability, with a similar weight loss occurring 
at a higher temperature of 672 °C, indicating the positive effect of p-βCD 
modification on thermal stability. 

The surface morphology and elemental composition of NC and NC-p-
βCD were further characterized by SEM and EDS. Figure 4 illustrates the 
SEM images of NC and NC-p-βCD, revealing a notable difference in their 
surface morphology. As depicted in Figure 4a, NC displayed a more 
agglomerated structure than NC-p-βCD (Figure 4b). Conversely, the SEM 
image of NC-p-βCD (Figure 4b) displayed a porous and cleaner structure 
with petal-like fragments, indicating the structural changes resulting from 
the modification of NC with p-βCD. 



 
Journal of Sustainability Research 9 of 20 

J Sustain Res. 2023;5(3):e230010. https://doi.org/10.20900/jsr20230010 

(a) (b) 

  

Figure 4. SEM images of (a) NC and (b) NC-pβCD adsorbents with their magnifications of ×1000 and ×2500, 
respectively. 

EDS analysis offers valuable insights into the covalent modification of 
NC with p-βCD. Supplementary Figure S4 in the Supplementary 
Information displays the EDS analysis results for NC and NC-p-βCD. The 
analysis reveals that NC comprises 39.5% carbon and 58.7% oxygen. 
Following the modification of NC with p-βCD, the carbon and oxygen 
content in NC-p-βCD were measured to be 37.5% and 57.6%, respectively. 
The difference in percentage can be attributed to the modification process 
from NC to NC-p-βCD. Importantly, the variation in the C/O ratios falls 
within the standard errors of the EDS measurements for these samples, 
further supporting the reliability of the analysis. 

After synthesizing the materials, we evaluated the effectiveness of NC-
p-βCD in removing BPS, TCS, and TCP. These impurities are hydrophobic 
and known to pose significant health risks, including endocrine 
disruption. By incorporating p-βCD into NC, we took advantage of the 
hydrophobic internal cavity of βCD, enabling the entrapment of these 
impurities within the hydrophobic p-βCD ring of NC-p-βCD [63]. Moreover, 
NC offers several advantages, such as a large surface area and numerous 
hydroxyl groups capable of forming hydrogen bonds [64]. These 
properties facilitate the adsorption and removal of pollutants by enabling 
hydrogen bonding on the surface of NC [65]. Additionally, NC is readily 
available and cost-effective, making it an ideal candidate for developing 
economically viable filtration materials for pollutant removal [64]. 

UV-visible spectroscopy was employed to determine the concentration 
of BPS before and after adsorption onto the adsorbents. Initially, the molar 
absorptivity coefficient of BPS was calculated by plotting the maximum 
absorbance against various BPS concentrations, as depicted in 
Supplementary Figure S5 (Supplementary Information). The calculated 
molar absorptivity coefficient was determined to be 2550 ± 102 M−1cm−1 at 
279 nm. 
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Figure 5a presents the UV-visible spectra of a 10−4 M BPS solution and 
the spectra obtained after passing 4 mL of the same BPS solution through 
a filtration plug comprising 100 mg of NC and NC-p-βCD respectively, at pH 
9. The maximum absorbance of BPS was observed at 268 nm. However, 
upon passing through the samples, the λmax shifted to 277 nm, and the 
absorbance decreased from 1.7 to 0.7 when using only NC as the filtration 
matrix. Notably, the adsorption dramatically dropped to 0.35 when NC-p-
βCD was utilized as the filtration matrix. These results indicate that both 
NC and NC-p-βCD effectively remove BPS, with NC-p-βCD demonstrating 
superior adsorption capabilities compared to NC alone. 

 

Figure 5. (a) UV-visible spectroscopy showing the concentration BPS before passing through the adsorbent 
(blue line) and after passing through 100 mg of each adsorbent NC (orange line) and NC-p-βCD (light green 
line) separately. Percentage (%) removal of (b) 4 mL 10−4 M BPS, (c) 2 mL of 2 × 10−3 M TCS, and (d) 2 mL of 
2 × 10−3 M TCP using 100 mg of NC-pβCD adsorbent at different pHs. 

The influence of pH on the adsorption properties was further 
investigated, considering the presence of different functional groups in 
wastewater impurities. Notably, BPS contains ionizable phenolic groups, 
highlighting the significance of pH in understanding the adsorption 
behavior of BPS and other pollutants on NC-p-βCD. Figure 5b illustrates the 
removal percentage of BPS (10−4 M) across a pH range of 2–10. The 
experiment was conducted using 100 mg of NC and NC-p-βCD adsorbents 
separately at various pH levels. 
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At low pH values, the adsorption of BPS was minimal, with only 6.7% 
adsorption at pH 2. Notably, NC exhibited negligible adsorption at this pH. 
However, at pH 4.3, NC-p-βCD demonstrated 27% adsorption, while no 
significant adsorption was observed using NC alone. This observation 
suggests that BPS adsorption occurs through host-guest interactions at this 
pH. As the pH increased to 8.6, the adsorption of BPS by NC-p-βCD reached 
28% but decreased to 19% at pH 9.6. NC also exhibited some adsorption at 
pH 8.6 and 9.6, albeit at a lower percentage. The decrease in adsorption 
capacity of NC-p-βCD at pH 9.6 can be attributed to the deprotonation of 
the phenolic group of BPS, which occurs at the pKa value of BPS (7.42–8.3) 
[66]. Deprotonation of BPS leads to negative charges on the surface if pH 
is greater than pKa, resulting in reduced adsorption via host-guest 
interactions. The maximum removal percentages of BPS on NC-p-βCD and 
NC were found to be 9.2% and 28%, respectively, at pH 8.6. 

We conducted additional tests to evaluate the removal efficiency of TCS 
and TCP using the NC-p-βCD adsorbent. Figure 5c illustrates the percentage 
removal of 10−3 M TCS at pH values ranging from 2 to 10, using 100 mg of 
control (NC) and sample (NC-p-βCD) separately. The plot reveals a similar 
adsorption trend for TCS as observed for BPS. The adsorption of TCS 
increased with an elevation in pH. Considering the pKa value of TCS (7.9–
8.1) [67], deprotonation occurs when pH exceeds the pKa value. This leads 
to enhanced ion-ion interactions in addition to hydrophobic interactions, 
resulting in increased adsorption. 

Similarly, Figure 5d displays the percentage removal of TCP at different 
pH levels using 100 mg of control (NC) and sample (NC-p-βCD). The graph 
demonstrates that adsorption also increased with rising pH, resembling 
the behavior observed for TCS removal. The pKa value of TCP is 6.3, and 
an increase in pH promotes ion-ion interactions between TCP and NC-p-
βCD [68]. The maximum percentage removal of TCP was achieved at pH 9 
(58%) using NC-p-βCD, compared to 39% with NC alone. This indicates that 
NC-p-βCD is effective in removing chlorinated phenols as well. 

To investigate the kinetics of the adsorption process, we examined the 
adsorption of BPS by passing a 10−3 M solution (pH 9.0) through NC-p-βCD 
with varying amounts ranging from 10 to 50 mg. The percentage removal 
of BPS corresponding to different amounts of adsorbent material is 
presented in Figure 6a. Initially, the adsorption of BPS was limited, but it 
gradually increased linearly as the quantity of adsorbent material was 
increased. 

We conducted further investigations on the adsorption of TCS by 
passing a 2 mL solution of 2 × 10−3 M TCS at pH 8.5 through different 
quantities of NC-p-βCD samples, ranging from 10 to 100 mg. The resulting 
percentage removal of TCS was plotted against the amount of NC-p-βCD, as 
illustrated in Figure 6b. 
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Figure 6. Percentage (%) removal of (a) 4 mL of 10−3 M BPS at pH 9.0, (b) 2 mL of 2 × 10−3 M TCS at pH 8.5, 
and (c) 2 mL of 2 × 10−3 M TCP at pH 8.5 using different doses of NC-pβCD. 

Similarly, the adsorption of TCP was examined by passing a 2 mL 
solution of 2 × 10−3 M TCP (pH 8.5) through varying amounts of NC-p-βCD 
samples, ranging from 10 to 100 mg. Initially, the adsorption of TCP was 
relatively low, but it increased proportionally with the quantity of 
adsorbent material, as shown in the corresponding graph depicted in 
Figure 6c. Notably, the maximum percentage (%) removal of TCP reached 
58% when passed through 100 mg of NC-pβCD. 

The kinetics of impurity removal from NC-p-βCD were investigated by 
analyzing both Freundlich and Langmuir adsorption kinetics plots. The 
Freundlich adsorption kinetics were examined using the equation [69]: 

𝐿𝑜𝑔 𝑞௘ = 𝐿𝑜𝑔 𝐾௙ +
1

𝑛
𝐿𝑜𝑔 𝐶௘  (i) 

In this equation, qe represents the amount of solute adsorbed per unit 
adsorbent, Kf is the Freundlich constant, 1/n is the measure of the intensity 
of adsorption, and Ce is the equilibrium concentration of adsorbate. 

To assess the Freundlich adsorption kinetics of BPS, TCS, and TCP 
removal, a plot of log qe against log Ce was generated, as depicted in 
Supplementary Figure S6 (Supplementary Information). However, no 
linear relationship was observed, indicating that the removal of these 
impurities did not follow Freundlich’s adsorption kinetics [68]. 
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On the other hand, the Langmuir adsorption kinetics were investigated 
using the following equation (ii) [70]. 

1

q௘
=

1

𝐶௘
൬

1

𝑞௢𝑏
൰ +

1

𝑞௢
 (ii) 

In this equation, b represents the Langmuir adsorption constant, qo is 
the maximum adsorption capacity, qe is the amount of adsorbate adsorbed 
on the surface of the adsorbent at equilibrium, and Ce represents the 
equilibrium concentration of adsorbate. 

Figure 7a illustrates the plot of 1/qe against 1/Ce for BPS adsorption on 
the surface of NC-p-βCD per unit mass at equilibrium (mg/g) [69]. A linear 
relationship was observed, indicating that the amount of BPS adsorbed 
depends on the quantity of adsorbent used. This finding supports the 
conclusion that the adsorption of BPS on NC-p-βCD follows Langmuir 
adsorption kinetics [68]. 

 

Figure 7. Langmuir adsorption kinetics of (a) 10−3 M BPS (b) 2 × 10−3 M TCS, and (c) 2 × 10−3 M TCP removal 
using 100 mg of NC-pβCD adsorbent. 

The Langmuir adsorption kinetics of TCS at pH 8.5 using the NC-p-βCD 
adsorbent were investigated by plotting 1/qe against 1/Ce, as illustrated in 
Figure 7b. The obtained linear plot suggests that the adsorption of TCS on 
NC-p-βCD followed Langmuir adsorption kinetics [71]. Similarly, the 
adsorption kinetics of 2 × 10−3 M TCP from the NC-p-βCD adsorbent were 
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studied using Langmuir adsorption kinetics plots, and it also exhibited 
Langmuir adsorption kinetics, as depicted in Figure 7c. 

The recyclability of the NC-p-βCD adsorbent was evaluated to assess its 
adsorption efficacy. The recyclability test was conducted using 100 mg of 
NC-p-βCD adsorbent for four different cycles, and the results are presented 
in Supplementary Figure S7 (Supplementary Information). Initially, the 
percentage (%) removal of BPS was high, approximately 30% in the first 
cycle. However, it gradually decreased to 23%, 21%, and 15% in the second, 
third, and fourth cycles. 

CONCLUSION 

The manuscript presents a successful synthesis and application of a 
hydrogel material, NC-p-βCD,. The synthesis was verified using various 
spectroscopic and microscopic techniques, including FTI/R, NMR, TGA, 
SEM, and EDS. The study investigated the efficacy of NC-p-βCD in removing 
endocrine disruptors (BPS, TCS, and TCP) from aquation solutions at 
different pH levels. Enhanced removal was observed at higher pH values 
due to increased interaction between the impurities and the adsorbent 
surface. Notably, while the control sample (NC) showed no removal of BPS 
at acidic pH (2.3 and 4.3), NC-p-βCD exhibited effective removal even at 
low pH. Adsorption kinetics followed Langmuir plots, suggesting 
monolayer adsorption. Adsorption efficiency was calculated by 
determining the adsorbed pollutant amount (in mg) per unit milligram of 
adsorbent. This manuscript showcases the potential of the NC-based 
hydrogel material, particularly NC-p-βCD, for the efficient removal of 
hydrophobic pollutants. The findings shed light on the pH-dependent 
adsorption process and offer valuable insights into the kinetics and 
efficiency of the modified material. These results contribute to the 
development of environmentally friendly approaches for water pollution 
remediation. Moving forward, our research endeavors will encompass the 
broader objective of employing synthesized NC-pβCD materials to 
eliminate a wider array of impurities. Additionally, we intend to assess the 
suitability of these materials for biomedical purposes, such as their 
potential applications in wound healing and tissue engineering. 

SUPPLEMENTARY MATERIALS 

The following supplementary materials are available online at 
https://doi.org/10.20900/jsr20230010. Supplementary Figure S1: FTIR 
spectroscopy of βCD and p-βCD samples. Supplementary Figure S2: 1H-
NMR spectroscopy of p-βCD sample. Supplementary Figure S3: FTIR 
spectroscopy of NC and NC-p-βCD adsorbents. Supplementary Figure S4: 
EDS analysis of (a) NC and (b) NC-pβCD adsorbents. Supplementary Figure 
S5: Absorbance vs concentration plot of BPS for molar extinction 
coefficient determination. Supplementary Figure S6: Freundlich 
adsorption kinetics of (a) 10−3 M BPS (b) 2 × 10−3 M TCS, and (c) 2 × 10−3 M 
TCP removal using 100 mg of NC-pβCD adsorbent. Supplementary Figure 
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S7: Reusability test of NC-p-βCD adsorbent for the removal of 10−4 M BPS 
solution. 
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