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ABSTRACT 

This research paper presents a novel approach to wind power prediction, 
focusing on seasonal analysis and machine learning models. The study 
addresses short-term wind power forecasting, specifically targeting the 
prediction of wind power generation at a given location over periods 
ranging from a few minutes to several days in advance. The proposed 
methodology integrates comprehensive seasonal analysis, leveraging four 
distinct seasons namely Winter, Spring, Summer, and Autumn to gain 
insights into wind energy production patterns. This study evaluates the 
performance of two machine learning models, kNN Regression and 
AdaBoost, across these seasons, providing valuable insights into their 
effectiveness in wind power prediction. This research contributes to 
advancing wind power forecasting methodologies by offering a 
comprehensive analysis of seasonal variations and leveraging machine 
learning techniques for accurate and reliable predictions. 

KEYWORDS: renewable energy; wind energy; kNN Regression; AdaBoost; 
energy prediction 

INTRODUCTION 

Wind power prediction is the process of forecasting the amount of 
electricity that can be generated from wind turbines at a given location 
over a specific period of time, typically ranging from a few minutes to 
several days in advance. This prediction is crucial for the efficient wind 
energy integration into the power grid and for ensuring a reliable and 
stable electricity supply. Wind power prediction is an essential component 
of managing renewable energy resources effectively [1]. 
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Wind power is intermittent and highly variable due to changes in wind 
speed and direction [2]. Accurate predictions help grid operators 
anticipate fluctuations in wind power generation, enabling them to 
balance electricity supply and demand and maintain grid stability. 

Electricity grids need to balance the production and consumption of 
electricity constantly. Accurate wind power predictions allow utilities to 
schedule other power sources (e.g., fossil fuel-based or hydroelectric 
plants) accordingly, optimizing the use of various resources and 
minimizing operational costs [3]. 

In many energy markets, electricity generators submit their expected 
generation schedules in advance. Wind power predictions enable wind 
farm operators to participate effectively in these markets and provide 
reliable commitments to deliver electricity [4]. 

In electricity markets with imbalance charges, utilities may incur 
financial penalties for deviations between scheduled and actual electricity 
production. Accurate predictions reduce the risk of imbalances and the 
associated charges. 

Governments, energy companies, and investors use wind power 
predictions to plan the deployment of wind farms and assess the potential 
of wind energy in a particular region. Accurate predictions are crucial for 
making informed decisions about investments in renewable energy 
infrastructure [5]. 

Energy traders and contract holders use wind power predictions to 
assess future supply and demand dynamics, make pricing decisions, and 
hedge against risks associated with variable wind power generation [6]. 

For policymakers and grid planners, wind power predictions are 
essential for conducting studies related to the integration of wind energy 
into the existing power grid. These studies help identify potential 
challenges and design strategies to accommodate higher shares of 
renewable energy [7]. 

 
Figure 1. World total installed wind power capacity in 2021 [8]. 
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Figure 1 displays a world total installed wind power capacity of 2021 
[8], which reaches 770,336 MW in 2021. The remaining sections of the 
paper include an overview of related work, materials and methods, results 
and discussion, and concluding remarks. This research aims to provide 
valuable insights into wind power forecasting methodologies and their 
applicability across different seasons. 

RELATED WORK 

Li et al. [9] focuses on wind power forecasting using Extreme Learning 
Machine (ELM) with error correction in short-term and ultra-short-term 
scales. ELM shows high computational efficiency. Overall, the error-
corrected ultra-short-term forecasting achieved improved accuracy 
(Normalized Root Mean Squared Error (NRMSE) of 5.76%) compared to 
short-term forecasting (NRMSE of 21.09%). 

Oh J et al. [10] focuses on wind power generation prediction using a 
Multi-Layer Perceptron (MLP) model with transfer learning. The MLP 
model consists of one or more hidden layers between the input and output 
layers. To optimize the model, the grid search optimization method has 
been applied to find the best combination of hidden layers and nodes. 
Transfer learning is employed to improve the prediction of a new wind 
power generator with limited data. The results show that transfer learning 
outperforms the simple MLP model and even a tree-based learning 
algorithm. The study demonstrates the potential of transfer learning in 
wind power prediction, especially for new wind power generators with 
insufficient historical data. 

Alkesaiberi et al. [11] explores the effectiveness of various machine 
learning models for wind power prediction using three datasets from 
wind turbines in France, Turkey, and Kaggle. The datasets vary in terms 
of time resolution and features. The investigation includes static models 
that only use past wind power data for forecasting, and models that use 
meteorological variables (wind speed and direction) as inputs for 
prediction. The results indicate that dynamic models outperform static 
models, and the inclusion of meteorological variables further improves 
prediction accuracy. The best-performing models include Gaussian 
Process Regression (GPR) and ensemble methods like Bagging, Boosting, 
and Random Forest (RF). 

P. Lakshmi and Deepak, P. [12] introduced a new Linear Regression 
algorithm and compares its effectiveness in predicting wind power 
generation with the widely used K-Nearest Neighbor (KNN) algorithm. 
Two groups were formed, one for KNN (group 1) and the other for Linear 
Regression (group 2), each containing 10 samples from a dataset collected 
from an actual wind turbine. The dataset includes factors like wind speed, 
altitude, humidity, air density, wind direction, and output power, gathered 
at 10-minute intervals over a year. 

Lili Wang et al. [13] described a novel approach to wind speed 
prediction called the multiple-point model. Unlike traditional single-point 
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methods which rely solely on data from one location, this model 
incorporates wind speed measurements from neighboring locations to 
enhance accuracy. Named the multiple-point-AdaBoost-ELM model, it 
combines the Extreme Learning Machine (ELM) with the AdaBoost 
algorithm. 

Guoqing An et al. [14] developed an integrated wind power prediction 
model, Adaboost-PSO-ELM, to address the challenges of wind energy 
utilization and grid stability. Combining Adaboost algorithm with extreme 
learning machine optimized by particle swarm optimization (PSO-ELM), 
the model enhances prediction accuracy and generalization ability. It 
optimizes ELM with PSO, then integrates weak predictors with Adaboost 
to form a strong prediction model. 

Most of the research have been done with a limited set of features to 
develop the prediction model. Our approach provides the prediction 
model with 14 features. In our research article, kNN Regression and 
AdaBoost Regression have been evaluated for their effectiveness in wind 
power prediction. 

MATERIALS AND METHODS 

Data 

The wind power dataset, accessible in the public domain of Kaggle [15], 
encompasses diverse weather, turbine, and rotor characteristics. The data 
spans from January 2018 to March 2020, captured at intervals of 10 
minutes. The raw dataset consists of up to 94,750 instances and includes 
21 features, incorporating date and time attributes. The index showcases 
the range of features present in the dataset. 

Data Imputation 

Commonly, missing values arise from either human error during data 
processing or system errors caused by equipment breakdown. This 
prevalent issue of missing values gives rise to various concerns, including 
reduced performance, data analysis challenges, and potentially biased 
results [16]. The mean value of the ‘ControlBoxTemperature’ attribute is 
found to be 0. Consequently, the decision was made to eliminate this 
particular feature from the dataset. Additionally, the 'date' attribute has 
undergone a data type conversion from ‘object’ to a date and time format. 
Figure 2 shows the presence of missing values in the dataset for each 
attribute. After imputation all the features have 118,224 instances and 
here Active power is the target variable and the data imputation has not 
been performed on the target variable. Table 1 provides the count, mean, 
standard deviation, percentiles, and minimum-maximum values for all 
the features in the imputed dataset. 
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Figure 2. Missing value count for each attribute in the dataset. 

Table 1. The descriptive statistics summary of the imputed dataset. 

Attribute mean std min 25% 50% 75% max 

Ambient 
Temperatue 

28.78 3.93 −20.03 26.33 28.82 30.72 55.23 

Bearing Shaft 
Temperature 

41.69 4.35 0.00 39.75 40.62 43.35 59.25 

Blade 1 Pitch 

Angle 
1.06 2.76 −18.84 −0.54 0.53 1.60 53.22 

Blade 2 Pitch 
Angle 

0.20 5.12 −98.73 −1.00 0.07 1.86 81.63 

Blade 3 Pitch 
Angle 

0.93 4.82 −94.73 −0.75 0.95 2.26 80.63 

Gearbox 

Bearing 
Temperature 

59.56 9.30 −9.51 53.20 56.39 65.50 82.24 

Gearbox Oil 

Temperature 
68.26 13.22 0.00 56.79 66.20 81.33 115.03 

Generator RPM 1101.20 383.96 0.00 1057.49 1101.30 1170.07 1809.94 
Generator 

Winding 1 
Temperature 

137.18 76.67 −105.33 64.31 114.87 215.81 487.81 

Generator 

Winding 2 
Temperature 

136.34 76.46 −105.64 63.52 114.31 214.74 486.38 

Hub 

Temperature 
34.77 4.58 −4.22 31.88 33.79 37.65 52.76 

Main Box 
Temperature 

35.26 6.71 −4.56 30.26 34.64 39.92 54.25 

Nacelle Position −10,178,133.08 69,759,027.77 −1,019,335,111.72 −14,395,727.98 160.00 260.67 501,213,483.92 
Reactive Power 82.83 105.99 −580.88 −0.08 48.62 110.74 476.08 
Rotor RPM 9.86 3.45 −0.06 9.47 9.84 10.47 16.27 

Wind Direction −10,178,133.08 69,759,027.77 −1,019,335,111.72 −14,395,727.98 160.00 260.67 501,213,483.92 
Wind Speed 5.93 2.37 −13.40 4.28 5.97 6.98 28.49 
Active Power 619.11 611.28 −38.52 79.64 402.65 1074.59 1779.03 
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Attribute Selection 

Lasso feature selection has been performed on the imputed dataset 
[17]. It is observed that ‘WindDirection’, ‘NacellePosition’, 
‘MainBoxTemperature’, ‘Blade3PitchAngle’ and ‘Blade2PitchAngle’ has the 
least coefficient value. So, these features has been removed from the 
model development. The remaining 14 features have been considered for 
model development including Date and Active Power. Figure 3 shows the 
Lasso feature coefficient values of all the features. 

 
Figure 3. LASSO feature selection. 

Dataset Insights 

Figure 4 shows the weekly mean values of (a) Wind Speed (b) Generator 
RPM and (c) Active Power. As per the data, the Monday, Tuesday, 
Wednesday and Saturday, the generating station able to produce more 
power. The same has been reflected with wind speed and generator RPM. 
The large daily wind speed has been found in the month of July and August 
month. In this diagram, because of large dataset, 10,000 random samples 
have been considered for the plots. Summary statistics are still based on 
the entire dataset. 
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(a) 

 

(b) 

 

(c) 

 

Figure 4. Weekly mean values of (a) Wind Speed (b) Generator RPM (c) Active Power. 
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Machine Learning Algorithms 

The regression model was constructed utilizing two distinct machine-
learning algorithms: kNN Regression and AdaBoost. 

To forecast the active power output for a new data point, the kNN model 
identifies the k-nearest neighbors in the training dataset (using a distance 
metric, commonly Euclidean distance), where k represents a user-defined 
hyperparameter [18]. Subsequently, the predicted value is computed as 
the average (for regression) or the majority class (for classification) of 
these k-nearest neighbors. 

In contrast, AdaBoost assigns weights to each data point in the training 
dataset. Initially, all data points carry equal weights. With each iteration, 
a new weak learner (often a simple decision tree) is trained using the 
weighted data [19]. The model then assesses its performance and assigns 
higher weights to misclassified data points. This iterative process 
continues for a predetermined number of iterations or until the model 
achieves the desired level of performance. 

While the kNN model excels in capturing local patterns and intricate 
relationships, resulting in high prediction accuracy, AdaBoost Regression 
benefits from its ensemble nature, adeptly managing complex and noisy 
data, albeit potentially sacrificing some accuracy in capturing local 
patterns compared to kNN. 

RESULTS AND DISCUSSION 

The dataset spans from December to March, capturing four seasons: 
Winter (December, January, February), Spring (March, April, May), 
Summer (June, July, August), and Autumn (September, October, 
November). This categorization enables the analysis of wind energy 
production patterns across different seasons, providing insights into 
seasonal variations and trends in energy generation. As shown in Table 2, 
The dataset for the Winter season comprises 17 input features and consists 
of 11,327 instances. The Spring season dataset contains 17 input features 
and encompasses 5893 instances. The dataset representing the Summer 
season consists of 17 input features and includes 7728 instances. Finally, 
the Autumn season dataset, like the others, is composed of 17 input 
features and encompasses 8115 instances. 

Table 2. Wind power dataset based on seasons. 

Season No. of input features No. of instances 

Winter 17 11,327 

Spring 17 5893 

Summer 17 7728 

Autumn 17 8115 
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The performance metrics mean absolute error (MAE), mean squared 
error (MSE), root mean squared error (RMSE) and R-squared value [20] 
have been defined in equations (1) to (4). 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑝𝑝)�

𝑛𝑛
 (1) 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑝𝑝)2

𝑛𝑛
 (2) 

𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 =  �
∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑝𝑝)2

𝑛𝑛
 (3) 

𝑅𝑅2 = 1 −  
∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑝𝑝)2

∑(𝑦𝑦𝑖𝑖 −  𝑦𝑦𝚤𝚤�)2
 (4) 

Table 3 showcases the performance metrics, including MAE, MSE, 
RMSE, and R-squared scores, for two wind power prediction models, kNN 
Regression and AdaBoost, evaluated across distinct seasons: Winter, 
Spring, Summer, and Autumn. Both kNN Regression and AdaBoost models 
exhibit varying performances across different seasons, as indicated by the 
metrics. In the Winter season, kNN Regression demonstrates notably 
lower MAE, MSE, and RMSE compared to AdaBoost, suggesting better 
predictive accuracy for this model during winter months. AdaBoost 
exhibits higher error metrics compared to kNN Regression during Spring, 
indicating potentially less effective performance in predicting wind power 
generation during this season. Both models perform relatively well during 
the Summer season, with moderate error metrics across the board. 
However, kNN Regression shows slightly lower errors compared to 
AdaBoost. Similar to Winter, kNN Regression outperforms AdaBoost in the 
Autumn season with lower error metrics, indicating its superior predictive 
capability during this time of the year. Overall, kNN Regression 
demonstrates more consistent performance across seasons, with lower 
error metrics observed in Winter and Autumn compared to AdaBoost. 
Depending on the specific requirements and priorities, stakeholders may 
choose between kNN Regression and AdaBoost models based on their 
seasonal performance variations and the importance of accurate wind 
power predictions throughout the year. 

Figures 5 to 8 depict the predicted and actual values plot of machine 
learning models, specifically k-NN Regression and AdaBoost Regression, 
across different seasons: Winter, Spring, Summer, and Autumn. Each 
figure showcases the predicted values generated by the machine learning 
models compared to the actual values for respective seasons, providing a 
visual representation of model performance. Stakeholders, such as 
renewable energy planners and operators, can utilize these visualizations 
to make informed decisions regarding the selection and optimization of 
machine learning models for wind power prediction, thereby enhancing 
the efficiency and reliability of renewable energy systems. 
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Table 3. Wind power prediction models’ performance on test set of various seasons. 

Model Name Season MAE MSE RMSE R2 
kNN Regression Winter 9.860 259.291 16.102 0.998 
AdaBoost Winter 36.110 1747.628 41.804 0.992 
kNN Regression Spring 17.621 1447.882 38.051 0.994 
AdaBoost Spring 37.63 2714.34 52.099 0.99 
kNN Regression Summer 16.191 851.53 29.181 0.997 
AdaBoost Summer 34.415 1805.79 42.494 0.995 
kNN Regression Autumn 11.509 492.871 22.200 0.998 
AdaBoost Autumn 30.592 1388.104 37.257 0.994 

(a) 

 

(b) 

 

Figure 5. The predicted and actual values plot of machine learning models (a) k-NN Regression (b) AdaBoost 
Regression for winter season. 
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(a) 

 

(b) 

 

Figure 6. The predicted and actual values plot of machine learning models (a) k-NN Regression (b) AdaBoost 
Regression for spring season. 
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(a) 

 

(b) 

 

Figure 7. The predicted and actual values plot of machine learning models (a) k-NN Regression (b) AdaBoost 
Regression for summer season. 
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(a) 

 

(b) 

 

Figure 8. The predicted and actual values plot of machine learning models (a) k-NN Regression (b) AdaBoost 
Regression for autumn season. 
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CONCLUSION 

In this study, a comprehensive analysis of wind power prediction using 
machine learning algorithms, specifically kNN Regression and AdaBoost, 
was presented, leveraging a dataset spanning from January 2018 to March 
2020. The dataset was refined through seasonal variation and attribute 
selection, ensuring its suitability for model development. The results 
demonstrated the varying performance of kNN Regression and AdaBoost 
across different seasons, with kNN Regression exhibiting superior 
predictive accuracy in Winter and Autumn, while AdaBoost showed 
competitive performance in Spring and Summer. These findings highlight 
the importance of considering seasonal variations when selecting wind 
power prediction models. The evaluation of model performance using 
metrics such as MAE, MSE, RMSE, and R-squared scores provided a 
quantitative assessment of predictive accuracy, guiding stakeholders in 
selecting the most suitable model for their specific requirements. While 
this study provides valuable insights into wind power prediction, several 
limitations exist. The models’ performance may be influenced by factors 
not accounted for in the dataset, such as extreme weather events or 
changes in turbine efficiency over time. Future research could focus on 
incorporating additional features or refining existing models to enhance 
predictive accuracy and robustness. 
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