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SUPPLEMENTARY METHODS  

MultiGS-P 

The DL architectures implemented in MultiGS-P are grouped into fully 
connected, graph-based, hybrid, and BLUP-integrated categories. Each 
architecture is described below, with documentation of its design 
rationale and intended use (Figures S1 and S2). All ML and DL models in 
MultiGS-P are fully configurable through a centralized configuration file 
(Table S3), allowing users to adjust hyperparameters, model depth, 
learning schedules, and regularization settings without modifying source 
code. This design facilitates systematic benchmarking and fair comparison 
across diverse model classes while supporting flexible adaptation to 
different datasets and breeding scenarios. 

DNNGS 

Fully connected feedforward neural networks (multilayer perceptrons) 
have been widely used as baseline DL models for genomic prediction, 
providing a flexible nonlinear extension of linear mixed models [1]. Our 
DNNGS follows this established MLP paradigm but is implemented as a 
compact, reproducible architecture with dropout-based regularization 
and optional batch normalization. It is designed to accept multiple marker 
types (SNPs, haplotypes, or PCs) under a unified MultiGS workflow to 
enable fair cross-model benchmarking (Figure S1A; Table 1). The model 
begins with an input-dropout layer followed by four sequential fully 
connected blocks with hidden dimensions 512, 256, 128, and 64. Each block 
consists of a dense layer with ReLU activation, dropout, and optional batch 
normalization to improve stability. A final dense output layer generates 
trait predictions. The architecture provides a balance between modeling 
nonlinear genotype–phenotype relationships and maintaining 
computational efficiency. 
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Figure S1. Architectures of two fully connected networks and four graph-based deep learning models for 
genomic selection: (A) DNNGS, (B) MLPGS, (C) GraphConvGS, (D) GraphAttnGS, (E) GraphSAGEGS, and (F) 
GraphFormer. 

MLPGS 

MLPGS is a multilayer perceptron architecture incorporating 
normalization and optional residual connections to enable stable training 
on genomic features (Figure S1B; Table 1). The model applies input 
dropout followed by two fully connected blocks: the first typically includes 
a 128-unit dense layer with GELU or ReLU activation, dropout, and 
LayerNorm or BatchNorm; the second block (64 units) follows the same 
structure. Optional residual connections allow block inputs to be added to 
outputs when dimensions match. A final normalization step and dense 
output layer produce trait predictions. This design offers improved 
regularization and gradient stability compared to conventional MLPs. 
While MLPs have been previously used as nonlinear genomic prediction 
models, our MLPGS variant emphasizes training stability and 
regularization through explicit normalization and residual connections, 
and its implementation within MultiGS enables fair, reproducible 
comparison with other model families. 

GraphConvGS 

Graph neural networks (GNNs) have recently been introduced for 
genomic prediction to explicitly model genetic relationships among 
individuals by representing samples as nodes connected through 
similarity-based edges [2,3]. GraphConvGS follows this paradigm by 
constructing sample-level k-nearest-neighbor genotype graphs (graph 
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convolutional network, GCN) and applying graph convolution to aggregate 
information from genetically similar individuals (Figure S1C; Table 1). 
Individuals are represented as nodes with marker-derived features, and 
edges encode genetic similarity. The architecture includes two GCNConv 
layers, each followed by LayerNorm, ReLU activation, and dropout, 
enabling neighborhood aggregation across genetically similar samples. A 
node-wise MLP (Dense → ReLU → Dropout → Dense) is applied to the 
resulting node embeddings to produce trait predictions. GraphConvGS 
captures relational patterns between individuals that are not available to 
feature-only models. 

GraphAttnGS 

Graph attention networks (GATs) were introduced by [4] as an 
extension of GCNs that learn attention weights over neighbors rather than 
using uniform or degree-normalized aggregation. GATs are now widely 
used in biological and population-structure problems where neighbor 
importance is heterogeneous, however, few GS studies have explored 
attention-based graph models [3] to address variable genetic similarity 
and population structure. GraphAttnGS extends GraphConvGS by 
replacing its convolution layers with GATConv layers, enabling multi-head 
attention over graph neighbors to learn which neighbors matter most, 
stabilizing training and capturing multiple “views” of genetic similarity 
simultaneously (Figure S1D; Table 1). Two stacked GATConv layers (each 
with normalization, activation, and dropout) learn node embeddings by 
weighting neighbor contributions according to learned attention 
coefficients. A node-wise MLP produces final predictions. This 
architecture adaptively highlights the most informative neighbors and 
models heterogeneous genotype similarity patterns across individuals. 

GraphSAGEGS 

Unlike transductive GCN- and GAT-based models, GraphSAGEGS 
summarizes local neighborhood information through learned aggregation 
functions, providing robust performance when predicting genetically 
distinct or previously unseen populations (Figure S1E; Table 1). The 
architecture includes two SAGEConv layers, each followed by 
normalization, activation, and dropout. A node-level MLP then maps these 
embeddings to predicted trait values. By aggregating summary statistics 
from each node’s local neighborhood, GraphSAGEGS provides efficient 
and robust performance, especially in across-population prediction 
scenarios. 

GraphFormer 

Hybrid graph–Transformer architectures have recently emerged as an 
effective strategy for combining local message passing with global self-
attention, enabling simultaneous modeling of neighborhood structure and 
long-range dependencies [5,6]. However, few genomic selection pipelines 
integrate both components within a unified and systematically 
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benchmarked framework. GraphFormer adopts this strategy by 
combining GraphSAGE-based local aggregation with Transformer-style 
global attention across individuals. Specifically, two SAGEConv layers are 
first applied to generate node embeddings that capture local genetic 
neighborhoods. These embeddings are then processed by a Transformer 
encoder, typically comprising two layers with multi-head self-attention 
and feed-forward networks, to model global interactions among all 
individuals. A readout module followed by a final MLP produces trait 
predictions. By explicitly separating local relational learning from global 
interaction modeling, GraphFormer captures both fine-scale genetic 
structure and long-range population-level dependencies within the 
population graph (Figure S1F; Table 1). 

DeepResBLUP 

Hybrid strategies that augment BLUP predictions with nonlinear deep-
learning components have been explored such as DLGBLUP [7] to account 
for genetic effects beyond linear additive assumptions. Building on this 
concept, DeepResBLUP is designed as a residual learning framework that 
explicitly models nonlinear deviations from a classical RR-BLUP baseline 
(Figure S2A; Table 1). In DeepResBLUP, RR-BLUP is first fitted to the 
genotype matrix to generate baseline GEBVs, which are treated as a strong 
additive prior. These RR-BLUP predictions are then provided as fixed, or 
optionally weakly trainable, inputs to a deep neural network that is 
constrained to learn residual corrections rather than replace the linear 
model. The residual network consists of three fully connected layers (256 
→  128 →  64 units) with GELU activation, batch normalization, and 
dropout. Its output represents the nonlinear residual component, which is 
combined with the original RR-BLUP prediction through an explicit skip 
connection to produce the final predictions. 

By focusing the deep network on residual signals, DeepResBLUP 
preserves the interpretability and robustness of RR-BLUP while selectively 
capturing nonlinear effects not explained by additive marker effects. In 
addition, the framework provides flexibility by allowing RR-BLUP to be 
replaced with alternative linear models, enabling residual learning on top 
of different additive baselines within the same architecture. 

DeepBLUP 

Recent work has shown that BLUP-style components can be made 
differentiable and jointly trained with neural networks [8]; DeepBLUP 
operationalizes this idea for RR-BLUP by embedding an RR-BLUP-
initialized linear layer within an end-to-end architecture, with options to 
fix or fine-tune the BLUP layer and enable a stabilizing skip connection. 
DeepBLUP integrates RR-BLUP directly into a fully end-to-end trainable 
neural architecture by implementing it as the first linear layer of the 
network (Figure S2B; Table 1). This RR-BLUP-initialized layer maps 
marker effects to predictions and can be either fixed or jointly optimized 
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during training. Unlike DeepResBLUP, RR-BLUP in DeepBLUP is not treated 
as a standalone baseline but rather as an embedded component within the 
network. The RR-BLUP layer feeds into a sequence of dense layers (256 → 
128 → 64 units) with GELU activation, batch normalization, and dropout, 
allowing nonlinear feature transformations to be learned directly from 
the RR-BLUP output. A final dense layer produces the predictions. An 
optional skip connection may be enabled to stabilize training by adding 
the RR-BLUP output to the network’s final predictions, but the model is 
fundamentally optimized as a single unified system, rather than as a 
baseline-plus-residual model. 

 
  

Figure S2. Architectures of three hybrid genomic selection models that integrate linear and deep learning 
components. (A) DeepResBLUP, (B) DeepBLUP and (C) EnsembleGS. 

EnsembleGS 

Stacking-based ensemble learning has previously been applied to 
genomic prediction to improve accuracy and robustness by optimally 
combining diverse learners using out-of-fold predictions [9, 10]. 
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EnsembleGS extends these approaches by supporting stacking over 
arbitrary MultiGS models, including linear, ML, DL, and hybrid 
architectures, within a standardized preprocessing and evaluation 
workflow (Figure 2C; Table 1). Unlike many prior implementations that 
stack a fixed set of learners, EnsembleGS allows users to flexibly configure 
both the base-model library and the meta-learner through the MultiGS 
configuration system. 

In EnsembleGS, a set of independent base models (e.g., RR-BLUP, BRR, 
XGBoost, LightGBM, and DNNGS) implemented in MultiGS-P are trained to 
generate out-of-fold (OOF) predictions, which are concatenated into a 
stacked prediction matrix. A meta-learner—by default linear regression, 
though alternative learners are supported—is then trained on this matrix 
to produce final predictions. During inference, predictions from the 
trained base models are passed through the meta-learner to yield the 
ensemble output. By leveraging complementary strengths across linear, 
ML, and DL models, EnsembleGS typically provides improved stability and 
robustness of prediction performance across traits and datasets, 
consistent with previous stacking ensemble applications in genomic 
prediction. 

 
Supplementary Figures and Tables 

 

 
Figure S3. Multidimensional scaling (MDS) analysis based on the genomic relationship matrix (GRM) for 
278 training lines (flax287) and 260 test lines from three biparental populations, showing pronounced 
genetic structure between the two sets.   
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Table S1. Linear and machine learning models implemented in MultiGS-R. 

Model 
name 

Full name Model 
category 

Core algorithm Key features R package 

RR-BLUP Ridge Regression 
Best Linear 
Unbiased 
Prediction 

Linear mixed 
model 

Penalized linear 
regression with 
ridge penalty 

Assumes equal variance of 
marker effects; 
computationally efficient 
baseline 

rrBLUP 

GBLUP Genomic Best 
Linear Unbiased 
Prediction 

Linear mixed 
model 

Genomic 
relationship 
matrix–based 
BLUP 

Models additive genetic 
relationships using genomic 
kinship 

BGLR 

BRR Bayesian Ridge 
Regression 

Bayesian 
linear model 

Bayesian ridge 
regression 

Shrinkage of marker effects 
with Gaussian prior 

BGLR 

BL Bayesian LASSO Bayesian 
linear model 

LASSO with 
Laplace prior 

Allows variable shrinkage 
across markers 

BGLR 

BayesA BayesA Bayesian 
linear model 

Marker-specific 
variance model 

Heavy-tailed priors capture 
large-effect loci 

BGLR 

BayesB BayesB Bayesian 
linear model 

Mixture model 
with spike-and-slab 
prior 

Performs variable selection 
by excluding many markers 

BGLR 

BayesC BayesC Bayesian 
linear model 

Modified BayesB 
with shared 
variance 

Improved stability and 
reduced sensitivity to 
hyperparameters 

BGLR 

RKHS Reproducing 
Kernel Hilbert 
Space regression 

Kernel-based 
model/ML 

Gaussian kernel 
regression 

Captures nonlinear and 
epistatic effects 

BGLR 

RFR Random Forest 
Regression 

ML Ensemble of 
decision trees 

Captures nonlinear 
interactions; robust to noise 

randomForest 

RFC Random Forest 
Classification 

ML Ensemble of 
decision trees 

Used for categorical trait 
prediction 

randomForest 

SVR Support Vector 
Regression 

ML Kernel-based 
margin regression 

Effective in high-dimensional 
settings 

e1071 

SVC Support Vector 
Classification 

ML Kernel-based 
classification 

Used for binary or multiclass 
traits 

e1071 

rrBLUP: Endelman JB [11]; BGLR: Perez P and de los Campos G [12]; randomForest: Liaw A and Wiener M 
[13]; e1071: Meyer D, Dimitriadou E, Hornik K, Weingessel A and Leisch F [14]. 

Table S2. Summary of eight linear and machine learning models implemented in MultiGS-P. 

Model Architecture / Type Core Algorithm/ 
Method 

Key Features Best Use Cases 

R_RRBLUP  Linear Mixed Model (R) Ridge regression BLUP 
via R package rrBLUP 

Widely validated 
baseline 

Additive traits 

R_GBLUP Linear Mixed Model (R) Genomic relationship 
kernel BLUP 

Captures population 
structure 

Standard GS 
benchmark 

RRBLUP Linear regression 
(Python) 

Ridge regression  Consistent with R 
version 

Additive effects 

ElasticNet Linear model (L1+L2) Elastic-net 
regularization 

Feature shrinkage Sparse/noisy SNP 
effects 

BRR Bayesian linear 
regression 

Gaussian priors Uncertainty estimation Moderate 
shrinkage traits 

RFR Ensemble of trees Random Forest Nonlinear interactions Epistasis / 
nonlinear 

XGBoost Gradient boosting trees Additive boosting Handles complex 
patterns 

Large SNP sets 

LightGBM Gradient boosting trees Histogram-based 
boosting 

Fast, scalable High-dimensional 
SNPs 
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Table S3. Default hyperparameter settings for the machine learning and deep learning models 
implemented in MultiGS-P. 

[Hyperparameters_R_RRBLUP] 
method = REML    #REML|ML 
 
[Hyperparameters_R_GBLUP]  
method = REML    #REML|ML 
 
[Hyperparameters_RRBLUP] 
lambda_value = None 
method = mixed_model 
lambda_method = auto    # Options: auto|reml|heritability|fixed 
tol = 1e-8 
 
[Hyperparameters_ElasticNet] 
# Reduce regularization for ElasticNet: from, 1 to 0.1->0.01->0.001 
alpha = 1.0 
l1_ratio = 0.1   # toward ridge: from 0.5 to 0.1-0.3 
 
[Hyperparameters_LASSO] 
alpha = 1.0 
 
[Hyperparameters_XGBoost] 
n_estimators = 100 
max_depth = 6 
learning_rate = 0.1 
subsample = 0.8 
colsample_bytree = 0.8 
random_state = 42 
 
[Hyperparameters_LightGBM] 
n_estimators = 100 
max_depth = -1 
learning_rate = 0.1 
num_leaves = 31 
subsample = 0.8 
colsample_bytree = 0.8 
random_state = 42 
 
[Hyperparameters_MLPGS] 
hidden_layers = 1024,512,256 
activation = gelu 



 
Crop Breeding, Genetics and Genomics 9 of 16 

Crop Breed Genet Genom. 2026;8(1):e260004. https://doi.org/10.20900/cbgg20260004. 

norm = layer 
residual = true 
input_dropout = 0.05 
dropout = 0.5 
 
learning_rate = 0.0005 
weight_decay = 0.0015 
batch_size = 16 
epochs = 300 
early_stopping_patience = 20 
warmup_ratio = 0.1 
grad_clip = 1.0 
seeds = 3 
use_huber = true 
huber_delta = 1.0 
swa = true 
swa_start = 0.7 
swa_freq = 1 
 
[Hyperparameters_DNNGS] 
hidden_layers = 512,256,128,64 
learning_rate = 0.001 
batch_size = 32 
epochs = 300 
dropout = 0.3 
activation = gelu 
batch_norm = true 
weight_decay = 0.0001 
input_dropout = 0.1 
 
[Hyperparameters_GraphConvGS] 
hidden_channels = 128 
num_layers = 2 
hidden_mlp = 128 
dropout = 0.2 
learning_rate = 0.0005 
epochs = 500 
top_k = 20 
graph_method = knn 
knn_metric = euclidean 
patience = 20 
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[Hyperparameters_GraphAttnGS] 
hidden_channels = 128 
num_layers = 2 
heads = 4 
hidden_mlp = 128 
dropout = 0.2 
learning_rate = 0.0005 
epochs = 500 
top_k = 20 
graph_method = knn 
knn_metric = euclidean 
patience = 20 
 
[Hyperparameters_GraphSAGEGS] 
hidden_channels = 128 
num_layers = 2 
hidden_mlp = 128 
dropout = 0.2 
learning_rate = 0.0005 
epochs = 500 
top_k = 20 
graph_method = knn 
knn_metric = euclidean 
aggr = mean 
patience = 20 
 
[Hyperparameters_GraphFormer] 
#GraphFormer: 
gnn_type = SAGE             # Choose: SAGE|GraphConvGS|GraphAttnGS 
gnn_hidden = 128            # Output size of GNN layer 
transformer_layers = 2      # Number of transformer layers 
d_model = 128               # Transformer dimension 
nhead = 4                   # Number of attention heads 
mlp_hidden = 128            # MLPGS hidden size 
learning_rate = 0.001 
epochs = 500 
patience = 30 
dropout = 0.1 
weight_decay = 0.001 
graph_method = knn 
knn_metric = euclidean 
top_k = 30 
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[Hyperparameters_DeepResBLUP] 
base_model = R_RRBLUP 
dl_model = MLPGS        # MLPGS|DNNGS|AttnCNNGS|hybrid (hybrid: marker-transformer + optional 
sample GNN, very slow) 
dl_hidden_layers = 128,64 
dl_dropout = 0.2 
dl_learning_rate = 0.001 
dl_batch_size = 32 
dl_epochs = 100 
 
[Hyperparameters_DeepBLUP] 
rrblup_lambda = 0.001 
dl_hidden_layers = 128,64,32 
dropout = 0.3 
activation = gelu 
use_precomputed_rrblup = true 
train_rrblup_layer = true 
learning_rate = 0.0001 
batch_size = 16 
epochs = 200 
weight_decay = 0.0001 
use_batch_norm = true 
use_residual_connections = true 
    
[Hyperparameters_EnsembleGS] 
# models available for stacking 
# 'R_RRBLUP', 'R_GBLUP', 'RRBLUP', 
# 'ElasticNet', 'RFR', 'BRR', 
# 'XGBoost', 'LightGBM',  
# 'DNNGS', 'AttnCNNGS', 'MLPGS', 
# 'GraphConvGS','GraphAttnGS', 'GraphSAGEGS', 
# 'GraphFormer', 'Transformer', 
# 'DeepResBLUP', 'DeepBLUP', 
base_models = R_RRBLUP,ElasticNet,LightGBM, MLPGS, GraphSAGEGS 
meta_model = linear   # linear|ridge  
meta_alpha = 1.0 
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Table S4. Genetic diversity and population differentiation between training and test sets across three 

datasets. 

Dataset Population Nucleotide 
diversity (π) 

Heterozygosity 
(Ho) 

Number 
of SNPs 

Number of 
individuals 

FST (training 
vs. test ) 

Wheat2000 Training 0.1353 0.0189 9,927 4,000 −9.14 × 10⁻⁶  
Test 0.1340 0.0184 9,927 1,600 

 

Maize6000 Training 0.3003 0.3811 10,000 4,664 -0.001  
Test 0.2990 0.3795 10,000 1,167 

 

Flax287 Training 0.3850 0.0142 33,596 287 0.2666  
Test 0.3716 0.0062 33,596 260 

 

FST: Fixation index.  
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Table S5. Prediction accuracies of five traits across models implemented in MultiGS-P, evaluated using a wheat training set of 1,600 accessions and 
a testing set of 400 randomly selected accessions genotyped with a randomly selected set of 10,000 SNP markers.  

Model Model type Tool Grain 
hardness (GH) 

Grain length 
(GL) 

Grain protein 
(GP) 

Grain width 
(GW) 

Thousand-kernel 
weight (TKW) 

SNP PC SNP PC SNP PC SNP PC SNP PC 
RR-BLUP (R) Linear mixed MultiGS-R 0.584 0.581 0.725 0.721 0.500 0.510 0.743 0.739 0.657 0.644 
GBLUP (R) Linear mixed MultiGS-R 0.587 0.485 0.720 0.679 0.504 0.469 0.742 0.679 0.647 0.612 

BRR (R) Bayesian linear MultiGS-R 0.586 0.487 0.716 0.678 0.507 0.469 0.743 0.677 0.643 0.614 
BL (R) Bayesian linear MultiGS-R 0.588 0.550 0.716 0.709 0.504 0.481 0.746 0.721 0.644 0.641 

BayesA (R) Bayesian linear MultiGS-R 0.585 0.555 0.719 0.709 0.505 0.478 0.747 0.722 0.645 0.641 
BayesB (R) Bayesian linear MultiGS-R 0.588 0.543 0.716 0.693 0.500 0.475 0.747 0.712 0.644 0.621 
BayesC (R) Bayesian linear MultiGS-R 0.587 0.518 0.716 0.645 0.504 0.473 0.741 0.677 0.644 0.594 

RFR (R) Machine learning MultiGS-R 0.613 0.569 0.743 0.731 0.528 0.533 0.757 0.740 0.668 0.665 
SVR (R) Machine learning MultiGS-R 0.513 0.470 0.650 0.657 0.416 0.454 0.679 0.683 0.569 0.566 

RKHS (R) Kernel-based/Machine learning MultiGS-R 0.585 0.500 0.715 0.691 0.506 0.465 0.738 0.655 0.656 0.604 
RFC (R) Machine learning MultiGS-R 0.595 0.542 0.671 0.662 0.491 0.473 0.611 0.563 0.589 0.573 
SVC (R) Machine learning MultiGS-R 0.498 0.410 0.638 0.601 0.430 0.442 0.558 0.495 0.553 0.562 

R_RRBLUP Linear mixed MultiGS-P 0.586 0.592 0.717 0.710 0.504 0.505 0.739 0.736 0.644 0.638 
R_GBLUP Linear mixed MultiGS-P 0.183 0.183 0.153 0.151 0.099 0.097 0.237 0.237 0.140 0.139 
RRBLUP Linear mixed MultiGS-P 0.582 0.588 0.716 0.700 0.491 0.482 0.740 0.723 0.640 0.615 

ElasticNet Linear MultiGS-P 0.477 0.518 0.617 0.657 0.386 0.459 0.683 0.698 0.561 0.606 
BRR Bayesian linear regression MultiGS-P 0.586 0.592 0.717 0.710 0.504 0.505 0.739 0.736 0.644 0.638 
RFR Ensemble of trees MultiGS-P 0.573 0.540 0.726 0.730 0.529 0.529 0.732 0.736 0.656 0.660 

XGBoost Gradient boosting trees MultiGS-P 0.605 0.577 0.721 0.730 0.462 0.514 0.743 0.721 0.639 0.646 
LightGBM Gradient boosting trees MultiGS-P 0.623 0.565 0.726 0.721 0.471 0.486 0.740 0.716 0.646 0.633 

DNNGS Deep learning MultiGS-P 0.537 0.541 0.722 0.716 0.496 0.473 0.722 0.715 0.655 0.615 
MLPGS Deep learning MultiGS-P 0.494 0.559 0.671 0.716 0.406 0.512 0.681 0.747 0.608 0.650 

GraphConvGS Deep learning MultiGS-P 0.501 0.468 0.553 0.497 0.404 0.382 0.624 0.591 0.542 0.409 
GraphAttnGS Deep learning MultiGS-P 0.425 0.465 0.564 0.596 0.341 0.395 0.601 0.602 0.497 0.495 
GraphSAGEGS Deep learning MultiGS-P 0.544 0.589 0.696 0.659 0.450 0.453 0.706 0.712 0.632 0.608 
GraphFormer Deep learning MultiGS-P 0.502 0.570 0.685 0.685 0.446 0.497 0.712 0.697 0.603 0.604 
DeepResBLUP Deep learning MultiGS-P 0.582 0.592 0.718 0.712 0.498 0.499 0.738 0.744 0.644 0.634 

DeepBLUP Deep learning MultiGS-P 0.538 0.594 0.701 0.682 0.448 0.481 0.722 0.716 0.631 0.620 
EnsembleGS Deep learning MultiGS-P 0.623 0.569 0.731 0.718 0.482 0.490 0.737 0.723 0.655 0.631 

DeepGS Deep learning Previously published 0.629 NA 0.727 NA 0.523 NA 0.722 NA 0.669 NA 
CropFormer Deep learning Previously published 0.510 NA 0.706 NA 0.389 NA 0.703 NA 0.640 NA 

WheatGP Deep learning Previously published 0.523 NA 0.697 NA 0.013 NA 0.696 NA 0.642 NA 
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Table S6. Prediction accuracies of three traits across models implemented in MultiGS-P, evaluated using a maize training set of 4,664 lines and a 
testing set of 1,167 randomly selected lines, and genotyped with 10,000 randomly selected single nucleotide polymorphism (SNP), 5,439 haplotype 
(HAP) or 313 principal component (PC) markers. 

Model Model Type Tool Days to tassel (DTT) Ear weight (EW) Plant height (PH) 
SNP HAP PC SNP HAP PC SNP HAP PC 

RR-BLUP (R) Linear mixed MultiGS-R 0.934 0.930 0.918 0.764 0.759 0.721 0.925 0.923 0.878 
GBLUP (R) Linear mixed MultiGS-R 0.935 0.931 0.917 0.769 0.762 0.721 0.926 0.924 0.879 
BRR (R) Bayesian linear MultiGS-R 0.935 0.931 0.917 0.768 0.762 0.721 0.927 0.924 0.879 
BL (R) Bayesian linear MultiGS-R 0.936 0.932 0.918 0.771 0.765 0.722 0.928 0.926 0.879 
BayesA (R) Bayesian linear MultiGS-R 0.936 0.933 0.918 0.772 0.767 0.722 0.929 0.926 0.878 
BayesB (R) Bayesian linear MultiGS-R 0.936 0.933 0.917 0.774 0.768 0.722 0.928 0.927 0.879 
BayesC (R) Bayesian linear MultiGS-R 0.935 0.932 0.916 0.773 0.764 0.721 0.927 0.927 0.879 
RFR (R) Machine learning MultiGS-R 0.924 0.921 0.858 0.756 0.746 0.652 0.901 0.900 0.822 
SVR (R) Machine learning MultiGS-R 0.927 0.925 0.916 0.739 0.742 0.704 0.919 0.920 0.876 
RKHS (R) Kernel-based/Machine learning MultiGS-R 0.936 0.934 0.932 0.777 0.776 0.775 0.928 0.927 0.923 
RFC (R) Machine learning MultiGS-R 0.799 0.802 0.725 0.658 0.650 0.625 0.798 0.798 0.748 
SVC (R) Machine learning MultiGS-R 0.796 0.794 0.782 0.655 0.664 0.655 0.795 0.795 0.761 
R_RRBLUP Linear mixed MultiGS-P 0.935 0.931 0.915 0.768 0.762 0.715 0.926 0.924 0.873 
R_GBLUP Linear mixed MultiGS-P 0.612 0.616 0.612 0.404 0.430 0.403 0.567 0.586 0.566 
RRBLUP Linear mixed MultiGS-P 0.935 0.932 0.915 0.768 0.762 0.716 0.923 0.922 0.874 
ElasticNet Linear MultiGS-P 0.826 0.824 0.861 0.615 0.587 0.630 0.766 0.758 0.800 
BRR Bayesian linear regression MultiGS-P 0.935 0.931 0.915 0.768 0.762 0.715 0.926 0.924 0.873 
RFR Ensemble of trees MultiGS-P 0.904 0.904 0.834 0.726 0.720 0.617 0.883 0.879 0.808 
XGBoost Gradient boosting trees MultiGS-P 0.937 0.935 0.871 0.788 0.785 0.666 0.925 0.929 0.843 
LightGBM Gradient boosting trees MultiGS-P 0.937 0.933 0.879 0.791 0.784 0.675 0.929 0.929 0.845 
DNNGS Deep learning MultiGS-P 0.927 0.932 0.922 0.753 0.763 0.726 0.912 0.919 0.897 
MLPGS Deep learning MultiGS-P 0.902 0.913 0.914 0.709 0.744 0.730 0.871 0.898 0.890 
GraphConvGS Deep learning MultiGS-P 0.843 0.840 0.857 0.599 0.591 0.600 0.773 0.760 0.785 
GraphAttnGS Deep learning MultiGS-P 0.819 0.844 0.811 0.517 0.568 0.523 0.739 0.730 0.740 
GraphSAGEGS Deep learning MultiGS-P 0.917 0.908 0.913 0.740 0.752 0.726 0.909 0.909 0.881 
GraphFormer Deep learning MultiGS-P 0.920 0.918 0.911 0.741 0.746 0.723 0.909 0.910 0.886 
DeepResBLUP Deep learning MultiGS-P 0.934 0.932 0.925 0.766 0.762 0.747 0.924 0.923 0.900 
DeepBLUP Deep learning MultiGS-P 0.935 0.929 0.926 0.768 0.758 0.765 0.924 0.917 0.908 
EnsembleGS Deep learning MultiGS-P 0.919 0.903 0.901 0.745 0.752 0.720 0.914 0.911 0.881 
DeepGS Deep learning Previously published 0.934 NA NA 0.764 NA NA 0.925 NA NA 
CropFormer Deep learning Previously published 0.914 NA NA 0.692 NA NA 0.898 NA NA 
DPCFormer Deep learning Previously published 0.892 NA NA 0.686 NA NA 0.843 NA NA 
WheatGP Deep learning Previously published 0.843 NA NA 0.765 NA NA 0.923 NA NA 
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Table S7. Prediction accuracies of three traits across models implemented in MultiGS, evaluated using a flax training set of 278 accessions from a 
core collection and a testing set of 260 biparental inbred lines, with 7,363 haplotype markers derived from 33,895 common SNPs. 

Model Model type Tool Days to maturity (DTM) Oil content (OIL) Plant height (PH) 
SNP HAP PC SNP HAP PC SNP HAP PC 

RR-BLUP (R) Linear mixed MultiGS-R 0.359 0.367 0.372 0.508 0.661 0.498 0.540 0.590 0.553 
GBLUP (R) Linear mixed MultiGS-R 0.325 0.343 0.047 0.450 0.596 0.095 0.553 0.605 -0.058 
BRR (R) Bayesian linear MultiGS-R 0.336 0.383 0.063 0.495 0.661 0.089 0.540 0.595 -0.072 
BL (R) Bayesian linear MultiGS-R 0.350 0.361 0.043 0.436 0.575 0.047 0.613 0.635 0.306 
BayesA (R) Bayesian linear MultiGS-R 0.336 0.361 0.035 0.483 0.615 0.006 0.541 0.626 0.393 
BayesB (R) Bayesian linear MultiGS-R 0.360 0.372 0.028 0.487 0.660 0.041 0.590 0.602 0.344 
BayesC (R) Bayesian linear MultiGS-R 0.357 0.370 0.050 0.507 0.616 0.090 0.582 0.601 0.226 
RFR (R) Machine learning MultiGS-R 0.335 0.318 0.251 0.566 0.495 0.251 0.688 0.666 0.197 
SVR (R) Machine learning MultiGS-R 0.072 0.255 0.313 0.519 0.644 0.339 0.438 0.471 -0.657 
RKHS (R) Kernel-based/Machine learning MultiGS-R 0.381 0.382 0.028 0.556 0.497 0.109 0.621 0.617 -0.097 
RFC (R) Machine learning MultiGS-R 0.364 0.350 0.155 0.385 0.462 0.080 0.517 0.513 -0.433 
SVC (R) Machine learning MultiGS-R 0.265 0.363 0.272 0.491 0.674 0.120 0.133 0.182 -0.590 
R_RRBLUP Linear mixed MultiGS-P 0.362 0.360 0.333 0.505 0.632 0.406 0.579 0.577 0.620 
R_GBLUP Linear mixed MultiGS-P 0.411 0.410 0.410 0.530 0.604 0.528 0.086 0.370 0.082 
RRBLUP Linear mixed MultiGS-P 0.318 0.333 0.257 0.507 0.630 0.338 0.557 0.558 0.563 
ElasticNet Linear MultiGS-P 0.304 0.258 0.291 0.672 0.561 0.450 0.679 0.651 0.631 
BRR Bayesian linear regression MultiGS-P 0.361 0.359 0.333 0.561 0.633 0.406 0.578 0.576 0.620 
RFR Ensemble of trees MultiGS-P 0.359 0.348 0.277 0.522 0.470 0.638 0.581 0.434 0.125 
XGBoost Gradient boosting trees MultiGS-P 0.239 0.164 0.030 0.578 0.344 0.619 0.537 0.519 0.235 
LightGBM Gradient boosting trees MultiGS-P 0.217 0.181 0.001 0.559 0.260 0.491 0.657 0.629 0.442 
DNNGS Deep learning MultiGS-P 0.352 0.294 0.318 0.747 0.668 0.211 0.699 0.615 0.590 
MLPGS Deep learning MultiGS-P 0.265 0.335 0.313 0.559 0.598 0.591 0.604 0.626 0.439 
GraphConvGS Deep learning MultiGS-P -0.363 0.201 0.183 -0.486 0.896 0.578 0.569 0.558 0.700 
GraphAttnGS Deep learning MultiGS-P 0.164 0.342 -0.340 0.496 0.678 0.812 0.502 0.452 0.183 
GraphSAGEGS Deep learning MultiGS-P -0.104 0.238 0.333 0.695 0.730 0.756 0.486 0.567 0.470 
GraphFormer Deep learning MultiGS-P 0.212 0.299 0.363 0.655 0.691 0.698 0.661 0.564 0.574 
DeepResBLUP Deep learning MultiGS-P 0.218 0.337 0.220 0.519 0.643 0.440 0.590 0.589 0.577 
DeepBLUP Deep learning MultiGS-P 0.123 0.309 -0.040 0.522 0.593 0.509 0.569 0.682 0.664 
EnsembleGS Deep learning MultiGS-P -0.040 0.248 0.097 0.673 0.685 0.726 0.608 0.618 0.493 
DeepGS Deep learning Previously published 0.390 NA NA 0.326 NA NA -0.084 NA NA 
CropFormer Deep learning Previously published -0.068 NA NA 0.001 NA NA 0.401 NA NA 
DPCFormer Deep learning Previously published 0.133 NA NA 0.565 NA NA 0.446 NA NA 
WheatGP Deep learning Previously published 0.000 NA NA 0.034 NA NA -0.147 NA NA 
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