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SUPPLEMENTARY METHODS
MultiGS-P

The DL architectures implemented in MultiGS-P are grouped into fully
connected, graph-based, hybrid, and BLUP-integrated categories. Each
architecture is described below, with documentation of its design
rationale and intended use (Figures S1 and S2). All ML and DL models in
MultiGS-P are fully configurable through a centralized configuration file
(Table S3), allowing users to adjust hyperparameters, model depth,
learning schedules, and regularization settings without modifying source
code. This design facilitates systematic benchmarking and fair comparison
across diverse model classes while supporting flexible adaptation to
different datasets and breeding scenarios.

DNNGS

Fully connected feedforward neural networks (multilayer perceptrons)
have been widely used as baseline DL. models for genomic prediction,
providing a flexible nonlinear extension of linear mixed models [1]. Our
DNNGS follows this established MLP paradigm but is implemented as a
compact, reproducible architecture with dropout-based regularization
and optional batch normalization. It is designed to accept multiple marker
types (SNPs, haplotypes, or PCs) under a unified MultiGS workflow to
enable fair cross-model benchmarking (Figure S1A; Table 1). The model
begins with an input-dropout layer followed by four sequential fully
connected blocks with hidden dimensions 512, 256, 128, and 64. Each block
consists of a dense layer with ReL.U activation, dropout, and optional batch
normalization to improve stability. A final dense output layer generates
trait predictions. The architecture provides a balance between modeling
nonlinear  genotype-phenotype relationships and maintaining
computational efficiency.
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Figure S1. Architectures of two fully connected networks and four graph-based deep learning models for

genomic selection: (A) DNNGS,

GraphFormer.

(B) MLPGS, (C) GraphConvGS, (D) GraphAttnGS, (E) GraphSAGEGS, and (F)

MLPGS

MLPGS is a multilayer perceptron architecture incorporating
normalization and optional residual connections to enable stable training
on genomic features (Figure S1B; Table 1). The model applies input
dropout followed by two fully connected blocks: the first typically includes
a 128-unit dense layer with GELU or ReLU activation, dropout, and
LayerNorm or BatchNorm; the second block (64 units) follows the same
structure. Optional residual connections allow block inputs to be added to
outputs when dimensions match. A final normalization step and dense
output layer produce trait predictions. This design offers improved
regularization and gradient stability compared to conventional MLPs.
While MLPs have been previously used as nonlinear genomic prediction
models, our MLPGS variant emphasizes training stability and
regularization through explicit normalization and residual connections,
and its implementation within MultiGS enables fair, reproducible
comparison with other model families.

GraphConvGS

Graph neural networks (GNNs) have recently been introduced for
genomic prediction to explicitly model genetic relationships among
individuals by representing samples as nodes connected through
similarity-based edges [2,3]. GraphConvGS follows this paradigm by
constructing sample-level k-nearest-neighbor genotype graphs (graph
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convolutional network, GCN) and applying graph convolution to aggregate
information from genetically similar individuals (Figure S1C; Table 1).
Individuals are represented as nodes with marker-derived features, and
edges encode genetic similarity. The architecture includes two GCNConv
layers, each followed by LayerNorm, ReLU activation, and dropout,
enabling neighborhood aggregation across genetically similar samples. A
node-wise MLP (Dense - ReLU - Dropout - Dense) is applied to the
resulting node embeddings to produce trait predictions. GraphConvGS
captures relational patterns between individuals that are not available to
feature-only models.

GraphAttnGS

Graph attention networks (GATs) were introduced by [4] as an
extension of GCNs that learn attention weights over neighbors rather than
using uniform or degree-normalized aggregation. GATs are now widely
used in biological and population-structure problems where neighbor
importance is heterogeneous, however, few GS studies have explored
attention-based graph models [3] to address variable genetic similarity
and population structure. GraphAttnGS extends GraphConvGS by
replacing its convolution layers with GATConv layers, enabling multi-head
attention over graph neighbors to learn which neighbors matter most,
stabilizing training and capturing multiple “views” of genetic similarity
simultaneously (Figure S1D; Table 1). Two stacked GATConv layers (each
with normalization, activation, and dropout) learn node embeddings by
weighting neighbor contributions according to learned attention
coefficients. A node-wise MLP produces final predictions. This
architecture adaptively highlights the most informative neighbors and
models heterogeneous genotype similarity patterns across individuals.

GraphSAGEGS

Unlike transductive GCN- and GAT-based models, GraphSAGEGS
summarizes local neighborhood information through learned aggregation
functions, providing robust performance when predicting genetically
distinct or previously unseen populations (Figure S1E; Table 1). The
architecture includes two SAGEConv layers, each followed by
normalization, activation, and dropout. A node-level MLP then maps these
embeddings to predicted trait values. By aggregating summary statistics
from each node’s local neighborhood, GraphSAGEGS provides efficient
and robust performance, especially in across-population prediction
scenarios.

GraphFormer

Hybrid graph-Transformer architectures have recently emerged as an
effective strategy for combining local message passing with global self-
attention, enabling simultaneous modeling of neighborhood structure and
long-range dependencies [5,6]. However, few genomic selection pipelines
integrate both components within a wunified and systematically
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benchmarked framework. GraphFormer adopts this strategy by
combining GraphSAGE-based local aggregation with Transformer-style
global attention across individuals. Specifically, two SAGEConv layers are
first applied to generate node embeddings that capture local genetic
neighborhoods. These embeddings are then processed by a Transformer
encoder, typically comprising two layers with multi-head self-attention
and feed-forward networks, to model global interactions among all
individuals. A readout module followed by a final MLP produces trait
predictions. By explicitly separating local relational learning from global
interaction modeling, GraphFormer captures both fine-scale genetic
structure and long-range population-level dependencies within the
population graph (Figure S1F; Table 1).

DeepResBLUP

Hybrid strategies that augment BLUP predictions with nonlinear deep-
learning components have been explored such as DLGBLUP [7] to account
for genetic effects beyond linear additive assumptions. Building on this
concept, DeepResBLUP is designed as a residual learning framework that
explicitly models nonlinear deviations from a classical RR-BLUP baseline
(Figure S2A; Table 1). In DeepResBLUP, RR-BLUP is first fitted to the
genotype matrix to generate baseline GEBVs, which are treated as a strong
additive prior. These RR-BLUP predictions are then provided as fixed, or
optionally weakly trainable, inputs to a deep neural network that is
constrained to learn residual corrections rather than replace the linear
model. The residual network consists of three fully connected layers (256
— 128 — 64 units) with GELU activation, batch normalization, and
dropout. Its output represents the nonlinear residual component, which is
combined with the original RR-BLUP prediction through an explicit skip
connection to produce the final predictions.

By focusing the deep network on residual signals, DeepResBLUP
preserves the interpretability and robustness of RR-BLUP while selectively
capturing nonlinear effects not explained by additive marker effects. In
addition, the framework provides flexibility by allowing RR-BLUP to be
replaced with alternative linear models, enabling residual learning on top
of different additive baselines within the same architecture.

DeepBLUP

Recent work has shown that BLUP-style components can be made
differentiable and jointly trained with neural networks [8]; DeepBLUP
operationalizes this idea for RR-BLUP by embedding an RR-BLUP-
initialized linear layer within an end-to-end architecture, with options to
fix or fine-tune the BLUP layer and enable a stabilizing skip connection.
DeepBLUP integrates RR-BLUP directly into a fully end-to-end trainable
neural architecture by implementing it as the first linear layer of the
network (Figure S2B; Table 1). This RR-BLUP-initialized layer maps
marker effects to predictions and can be either fixed or jointly optimized
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during training. Unlike DeepResBLUP, RR-BLUP in DeepBLUP is not treated
as a standalone baseline but rather as an embedded component within the
network. The RR-BLUP layer feeds into a sequence of dense layers (256 —
128 - 64 units) with GELU activation, batch normalization, and dropout,
allowing nonlinear feature transformations to be learned directly from
the RR-BLUP output. A final dense layer produces the predictions. An
optional skip connection may be enabled to stabilize training by adding
the RR-BLUP output to the network’s final predictions, but the model is
fundamentally optimized as a single unified system, rather than as a
baseline-plus-residual model.

(A) DeepResBLUP (B) DeepBLUP (C) EnsembleGS
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Figure S2. Architectures of three hybrid genomic selection models that integrate linear and deep learning
components. (A) DeepResBLUP, (B) DeepBLUP and (C) EnsembleGS.

EnsembleGS

Stacking-based ensemble learning has previously been applied to
genomic prediction to improve accuracy and robustness by optimally
combining diverse learners using out-of-fold predictions [9, 10].
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EnsembleGS extends these approaches by supporting stacking over
arbitrary MultiGS models, including linear, ML, DL, and hybrid
architectures, within a standardized preprocessing and evaluation
workflow (Figure 2C; Table 1). Unlike many prior implementations that
stack a fixed set of learners, EnsembleGS allows users to flexibly configure
both the base-model library and the meta-learner through the MultiGS
configuration system.

In EnsembleGS, a set of independent base models (e.g., RR-BLUP, BRR,
XGBoost, LightGBM, and DNNGS) implemented in MultiGS-P are trained to
generate out-of-fold (OOF) predictions, which are concatenated into a
stacked prediction matrix. A meta-learner—by default linear regression,
though alternative learners are supported—is then trained on this matrix
to produce final predictions. During inference, predictions from the
trained base models are passed through the meta-learner to yield the
ensemble output. By leveraging complementary strengths across linear,
ML, and DL models, EnsembleGS typically provides improved stability and
robustness of prediction performance across traits and datasets,
consistent with previous stacking ensemble applications in genomic
prediction.

Supplementary Figures and Tables
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Figure S3. Multidimensional scaling (MDS) analysis based on the genomic relationship matrix (GRM) for
278 training lines (flax287) and 260 test lines from three biparental populations, showing pronounced
genetic structure between the two sets.
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Table S1. Linear and machine learning models implemented in MultiGS-R.
Model Full name Model Core algorithm Key features R package
name category
RR-BLUP Ridge Regression  Linear mixed Penalized linear Assumes equal variance of rrBLUP
Best Linear model regression with marker effects;
Unbiased ridge penalty computationally efficient
Prediction baseline
GBLUP Genomic Best Linear mixed Genomic Models additive genetic BGLR
Linear Unbiased model relationship relationships using genomic
Prediction matrix-based kinship
BLUP
BRR Bayesian Ridge Bayesian Bayesian ridge Shrinkage of marker effects BGLR
Regression linear model regression with Gaussian prior
BL Bayesian LASSO Bayesian LASSO with Allows variable shrinkage BGLR
linear model Laplace prior across markers
BayesA BayesA Bayesian Marker-specific Heavy-tailed priors capture BGLR
linear model variance model large-effect loci
BayesB BayesB Bayesian Mixture model Performs variable selection BGLR
linear model with spike-and-slab by excluding many markers
prior
BayesC BayesC Bayesian Modified BayesB Improved stability and BGLR
linear model with shared reduced sensitivity to
variance hyperparameters
RKHS Reproducing Kernel-based Gaussian kernel Captures nonlinear and BGLR
Kernel Hilbert model/ML regression epistatic effects
Space regression
RFR Random Forest ML Ensemble of Captures nonlinear randomForest
Regression decision trees interactions; robust to noise
RFC Random Forest ML Ensemble of Used for categorical trait randomForest
Classification decision trees prediction
SVR Support Vector ML Kernel-based Effective in high-dimensional e1071
Regression margin regression  settings
SvC Support Vector ML Kernel-based Used for binary or multiclass  e1071
Classification classification traits

rrBLUP: Endelman JB [11]; BGLR: Perez P and de los Campos G [12]; randomForest: Liaw A and Wiener M
[13]; e1071: Meyer D, Dimitriadou E, Hornik K, Weingessel A and Leisch F [14].

Table S2. Summary of eight linear and machine learning models implemented in MultiGS-P.

Model Architecture / Type Core Algorithm/ Key Features Best Use Cases
Method
R_RRBLUP Linear Mixed Model (R) Ridge regression BLUP ~ Widely validated Additive traits
via R package rrBLUP baseline
R_GBLUP Linear Mixed Model (R) Genomic relationship Captures population Standard GS
kernel BLUP structure benchmark
RRBLUP Linear regression Ridge regression Consistent with R Additive effects
(Python) version
ElasticNet  Linear model (L1+L2) Elastic-net Feature shrinkage Sparse/noisy SNP
regularization effects
BRR Bayesian linear Gaussian priors Uncertainty estimation Moderate
regression shrinkage traits
RFR Ensemble of trees Random Forest Nonlinear interactions Epistasis /
nonlinear
XGBoost Gradient boosting trees Additive boosting Handles complex Large SNP sets
patterns
LightGBM Gradient boosting trees Histogram-based Fast, scalable High-dimensional

boosting

SNPs
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Table S3. Default hyperparameter settings for the machine learning and deep learning models
implemented in MultiGS-P.

[Hyperparameters_R_RRBLUP]
method = REML #REML|ML

[Hyperparameters_R_GBLUP]
method = REML #REML|ML

[Hyperparameters_RRBLUP]

lambda_value = None

method = mixed_model

lambda_method = auto # Options: auto|reml|heritability|fixed
tol=1e-8

[Hyperparameters_ElasticNet]

# Reduce regularization for ElasticNet: from, 1 to0 0.1->0.01->0.001
alpha=1.0

1_ratio=0.1 # toward ridge: from 0.5t0 0.1-0.3

[Hyperparameters_LASSO]
alpha=1.0

[Hyperparameters_XGBoost]
n_estimators =100
max_depth =6

learning_rate = 0.1
subsample =0.8
colsample_bytree = 0.8
random_state = 42

[Hyperparameters_LightGBM]
n_estimators = 100
max_depth = -1

learning_rate = 0.1
num_leaves = 31

subsample =0.8
colsample_bytree = 0.8
random_state = 42

[Hyperparameters_MLPGS]
hidden_layers =1024,512,256
activation = gelu

Crop Breed Genet Genom. 2026;8(1):e260004. https://doi.org/10.20900/cbgg20260004.



Crop Breeding, Genetics and Genomics

9 of 16

norm = layer
residual = true
input_dropout =0.05
dropout=0.5

learning_rate = 0.0005
weight_decay = 0.0015
batch_size =16
epochs =300
early_stopping_patience = 20
warmup_ratio =0.1
grad_clip=1.0

seeds =3

use_huber =true
huber_delta=1.0

swa =true
swa_start=0.7
swa_freq=1

[Hyperparameters_DNNGS]
hidden_layers =512,256,128,64
learning_rate = 0.001

batch_size = 32

epochs =300

dropout=0.3

activation = gelu

batch_norm =true
weight_decay = 0.0001
input_dropout = 0.1

[Hyperparameters_GraphConvGS]
hidden_channels = 128
num_layers =2

hidden_mlp =128

dropout=0.2

learning_rate = 0.0005

epochs =500

top_k=20

graph_method = knn

knn_metric = euclidean

patience =20
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Crop Breeding, Genetics and Genomics

10 of 16

[Hyperparameters_GraphAttnGS]
hidden_channels = 128
num_layers = 2

heads =4

hidden_mlp =128
dropout=0.2
learning_rate = 0.0005
epochs =500
top_k=20
graph_method = knn
knn_metric = euclidean
patience =20

[Hyperparameters_GraphSAGEGS]
hidden_channels = 128
num_layers =2
hidden_mlp =128
dropout=0.2
learning_rate = 0.0005
epochs =500
top_k=20
graph_method = knn
knn_metric = euclidean
aggr = mean

patience =20

[Hyperparameters_GraphFormer]

#GraphFormer:

gnn_type = SAGE # Choose: SAGE|GraphConvGS|GraphAttnGS
gnn_hidden =128 # Output size of GNN layer
transformer_layers = 2 # Number of transformer layers

d_model=128 # Transformer dimension

nhead =4 # Number of attention heads

mlp_hidden =128 # MLPGS hidden size

learning_rate = 0.001
epochs =500

patience = 30

dropout =0.1
weight_decay = 0.001
graph_method = knn
knn_metric = euclidean
top_k =30
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[Hyperparameters_DeepResBLUP]

base_model = R_RRBLUP

dl_model =MLPGS # MLPGS|DNNGS|AttnCNNGS|hybrid (hybrid: marker-transformer + optional
sample GNN, very slow)

dl_hidden_layers = 128,64

dl_dropout=0.2

dl_learning_rate = 0.001

dl_batch_size = 32

dl_epochs =100

[Hyperparameters_DeepBLUP]
rrblup_lambda = 0.001
dl_hidden_layers = 128,64,32
dropout=0.3

activation = gelu
use_precomputed_rrblup = true
train_rrblup_layer = true
learning_rate = 0.0001
batch_size =16

epochs =200

weight_decay = 0.0001
use_batch_norm =true
use_residual_connections = true

[Hyperparameters_EnsembleGS]

# models available for stacking

#'R_RRBLUP', 'R_GBLUP', 'RRBLUP',

# 'ElasticNet’, 'RFR} 'BRR;,

# 'XGBoost, 'LightGBM,

# 'DNNGS)/, 'AttnCNNGS, 'MLPGS],
#'GraphConvGS',GraphAttnGS', 'GraphSAGEGS),
# 'GraphFormer!, 'Transformer’,

# 'DeepResBLUP', 'DeepBLUP!,

base_models = R_RRBLUP,ElasticNet,LightGBM, MLPGS, GraphSAGEGS
meta_model =linear # linear|ridge
meta_alpha=1.0

Crop Breed Genet Genom. 2026;8(1):e260004. https://doi.org/10.20900/cbgg20260004.



Crop Breeding, Genetics and Genomics 12 of 16

Table S4. Genetic diversity and population differentiation between training and test sets across three

datasets.
Dataset Population Nucleotide Heterozygosity ¥ Number Number of FST (training
diversity (1) (Ho) of SNPs individuals vs. test)
Wheat2000 Training 0.1353 0.0189 9,927 4,000 -9.14 x 107¢
Test 0.1340 0.0184 9,927 1,600
Maize6000 Training 0.3003 0.3811 10,000 4,664 -0.001
Test 0.2990 0.3795 10,000 1,167
Flax287 Training 0.3850 0.0142 33,596 287 0.2666
Test 0.3716 0.0062 33,596 260

FST: Fixation index.
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Table S5. Prediction accuracies of five traits across models implemented in MultiGS-P, evaluated using a wheat training set of 1,600 accessions and
a testing set of 400 randomly selected accessions genotyped with a randomly selected set of 10,000 SNP markers.

Model Model type Tool Grain Grain length Grain protein Grain width Thousand-kernel
hardness (GH) (GL) (GP) (GW) weight (TKW)
SNP PC SNP PC SNP PC SNP PC SNP PC
RR-BLUP (R) Linear mixed MultiGS-R 0.584 0.581 0.725 0.721 0.500 0.510 0.743 0.739 0.657 0.644
GBLUP (R) Linear mixed MultiGS-R 0.587  0.485 0.720  0.679 0.504 0.469 0.742 0.679 0.647 0.612
BRR (R) Bayesian linear MultiGS-R 0.586 0.487 0.716 0.678 0.507 0.469 0.743 0.677 0.643 0.614
BL (R) Bayesian linear MultiGS-R 0.588  0.550 0.716  0.709 0.504 0.481 0.746 0.721 0.644 0.641
BayesA (R) Bayesian linear MultiGS-R 0.585  0.555 0.719  0.709 0.505 0.478 0.747 0.722 0.645 0.641
BayesB (R) Bayesian linear MultiGS-R 0.588  0.543 0.716  0.693 0.500 0.475 0.747 0.712 0.644 0.621
BayesC (R) Bayesian linear MultiGS-R 0.587  0.518 0.716  0.645 0.504 0.473 0.741 0.677 0.644 0.594
RFR (R) Machine learning MultiGS-R 0.613  0.569 0.743  0.731 0.528 0.533 0.757 0.740 0.668 0.665
SVR (R) Machine learning MultiGS-R 0.513  0.470 0.650  0.657 0.416 0.454 0.679 0.683 0.569 0.566
RKHS (R) Kernel-based/Machine learning MultiGS-R 0.585  0.500 0.715  0.691 0.506 0.465 0.738 0.655 0.656 0.604
RFC (R) Machine learning MultiGS-R 0.595  0.542 0.671  0.662 0.491 0.473 0.611 0.563 0.589 0.573
SVC (R) Machine learning MultiGS-R 0.498 0410 0.638  0.601 0.430 0.442 0.558 0.495 0.553 0.562
R_RRBLUP Linear mixed MultiGS-P 0.586  0.592 0.717  0.710 0.504 0.505 0.739 0.736 0.644 0.638
R_GBLUP Linear mixed MultiGS-P 0.183  0.183 0.153  0.151 0.099 0.097 0.237 0.237 0.140 0.139
RRBLUP Linear mixed MultiGS-P 0.582  0.588 0.716  0.700 0.491 0.482 0.740 0.723 0.640 0.615
ElasticNet Linear MultiGS-P 0.477 0518 0.617  0.657 0.386 0.459 0.683 0.698 0.561 0.606
BRR Bayesian linear regression MultiGS-P 0.586  0.592 0.717  0.710 0.504 0.505 0.739 0.736 0.644 0.638
RFR Ensemble of trees MultiGS-P 0.573  0.540 0.726  0.730 0.529 0.529 0.732 0.736 0.656 0.660
XGBoost Gradient boosting trees MultiGS-P 0.605 0.577 0.721 0.730 0.462 0.514 0.743 0.721 0.639 0.646
LightGBM Gradient boosting trees MultiGS-P 0.623  0.565 0.726  0.721 0.471 0.486 0.740 0.716 0.646 0.633
DNNGS Deep learning MultiGS-P 0.537  0.541 0.722  0.716 0.496 0.473 0.722 0.715 0.655 0.615
MLPGS Deep learning MultiGS-P 0.494  0.559 0.671  0.716 0.406 0.512 0.681 0.747 0.608 0.650
GraphConvGS Deep learning MultiGS-P 0.501  0.468 0.553  0.497 0.404 0.382 0.624 0.591 0.542 0.409
GraphAttnGS Deep learning MultiGS-P 0.425 0.465 0.564  0.596 0.341 0.395 0.601 0.602 0.497 0.495
GraphSAGEGS Deep learning MultiGS-P 0.544  0.589 0.696  0.659 0.450 0.453 0.706 0.712 0.632 0.608
GraphFormer Deep learning MultiGS-P 0.502  0.570 0.685  0.685 0.446 0.497 0.712 0.697 0.603 0.604
DeepResBLUP Deep learning MultiGS-P 0.582 0.592 0.718 0.712 0.498 0.499 0.738 0.744 0.644 0.634
DeepBLUP Deep learning MultiGS-P 0.538  0.594 0.701  0.682 0.448 0.481 0.722 0.716 0.631 0.620
EnsembleGS Deep learning MultiGS-P 0.623  0.569 0.731  0.718 0.482 0.490 0.737 0.723 0.655 0.631
DeepGS Deep learning Previously published  0.629 NA 0.727 NA 0.523 NA 0.722 NA 0.669 NA
CropFormer Deep learning Previously published  0.510 NA 0.706 NA 0.389 NA 0.703 NA 0.640 NA
WheatGP Deep learning Previously published  0.523 NA 0.697 NA 0.013 NA 0.696 NA 0.642 NA
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Table S6. Prediction accuracies of three traits across models implemented in MultiGS-P, evaluated using a maize training set of 4,664 lines and a
testing set of 1,167 randomly selected lines, and genotyped with 10,000 randomly selected single nucleotide polymorphism (SNP), 5,439 haplotype
(HAP) or 313 principal component (PC) markers.

Model Model Type Tool Days to tassel (DTT) Ear weight (EW) Plant height (PH)

SNP HAP PC SNP HAP PC SNP HAP PC
RR-BLUP (R) Linear mixed MultiGS-R 0.934 0.930 0.918 0.764 0.759 0.721 0.925 0.923 0.878
GBLUP (R) Linear mixed MultiGS-R 0.935 0.931 0.917 0.769 0.762 0.721 0.926 0.924 0.879
BRR (R) Bayesian linear MultiGS-R 0.935 0.931 0.917 0.768 0.762 0.721 0.927 0.924 0.879
BL (R) Bayesian linear MultiGS-R 0.936 0.932 0.918 0.771 0.765 0.722 0.928 0.926 0.879
BayesA (R) Bayesian linear MultiGS-R 0.936 0.933 0.918 0.772 0.767 0.722 0.929 0.926 0.878
BayesB (R) Bayesian linear MultiGS-R 0.936 0.933 0.917 0.774 0.768 0.722 0.928 0.927 0.879
BayesC (R) Bayesian linear MultiGS-R 0.935 0.932 0.916 0.773 0.764 0.721 0.927 0.927 0.879
RFR (R) Machine learning MultiGS-R 0.924 0.921 0.858 0.756 0.746 0.652 0.901 0.900 0.822
SVR (R) Machine learning MultiGS-R 0.927 0.925 0.916 0.739 0.742 0.704 0.919 0.920 0.876
RKHS (R) Kernel-based/Machine learning MultiGS-R 0.936 0.934 0.932 0.777 0.776 0.775 0.928 0.927 0.923
RFC (R) Machine learning MultiGS-R 0.799 0.802 0.725 0.658 0.650 0.625 0.798 0.798 0.748
SVC (R) Machine learning MultiGS-R 0.796 0.794 0.782 0.655 0.664 0.655 0.795 0.795 0.761
R_RRBLUP Linear mixed MultiGS-P 0.935 0.931 0.915 0.768 0.762 0.715 0.926 0.924 0.873
R_GBLUP Linear mixed MultiGS-P 0.612 0.616 0.612 0.404 0.430 0.403 0.567 0.586 0.566
RRBLUP Linear mixed MultiGS-P 0.935 0.932 0.915 0.768 0.762 0.716 0.923 0.922 0.874
ElasticNet Linear MultiGS-P 0.826 0.824 0.861 0.615 0.587 0.630 0.766 0.758 0.800
BRR Bayesian linear regression MultiGS-P 0.935 0.931 0.915 0.768 0.762 0.715 0.926 0.924 0.873
RFR Ensemble of trees MultiGS-P 0.904 0.904 0.834 0.726 0.720 0.617 0.883 0.879 0.808
XGBoost Gradient boosting trees MultiGS-P 0.937 0.935 0.871 0.788 0.785 0.666 0.925 0.929 0.843
LightGBM Gradient boosting trees MultiGS-P 0.937 0.933 0.879 0.791 0.784 0.675 0.929 0.929 0.845
DNNGS Deep learning MultiGS-P 0.927 0.932 0.922 0.753 0.763 0.726 0.912 0.919 0.897
MLPGS Deep learning MultiGS-P 0.902 0.913 0.914 0.709 0.744 0.730 0.871 0.898 0.890
GraphConvGS Deep learning MultiGS-P 0.843 0.840 0.857 0.599 0.591 0.600 0.773 0.760 0.785
GraphAttnGS Deep learning MultiGS-P 0.819 0.844 0.811 0.517 0.568 0.523 0.739 0.730 0.740
GraphSAGEGS Deep learning MultiGS-P 0.917 0.908 0.913 0.740 0.752 0.726 0.909 0.909 0.881
GraphFormer Deep learning MultiGS-P 0.920 0.918 0.911 0.741 0.746 0.723 0.909 0.910 0.886
DeepResBLUP Deep learning MultiGS-P 0.934 0.932 0.925 0.766 0.762 0.747 0.924 0.923 0.900
DeepBLUP Deep learning MultiGS-P 0.935 0.929 0.926 0.768 0.758 0.765 0.924 0.917 0.908
EnsembleGS Deep learning MultiGS-P 0.919 0.903 0.901 0.745 0.752 0.720 0.914 0.911 0.881
DeepGS Deep learning Previously published  0.934 NA NA 0.764 NA NA 0.925 NA NA
CropFormer Deep learning Previously published 0.914 NA NA 0.692 NA NA 0.898 NA NA
DPCFormer Deep learning Previously published  0.892 NA NA 0.686 NA NA 0.843 NA NA
WheatGP Deep learning Previously published  0.843 NA NA 0.765 NA NA 0.923 NA NA
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Table S7. Prediction accuracies of three traits across models implemented in MultiGS, evaluated using a flax training set of 278 accessions from a
core collection and a testing set of 260 biparental inbred lines, with 7,363 haplotype markers derived from 33,895 common SNPs.

Model Model type Tool Days to maturity (DTM) 0il content (OIL) Plant height (PH)
SNP HAP PC SNP HAP PC SNP HAP PC

RR-BLUP (R) Linear mixed MultiGS-R 0.359 0.367 0.372 0.508 0.661 0.498 0.540 0.590 0.553
GBLUP (R) Linear mixed MultiGS-R 0.325 0.343 0.047 0.450 0.596 0.095 0.553 0.605 -0.058
BRR (R) Bayesian linear MultiGS-R 0.336 0.383 0.063 0.495 0.661 0.089 0.540 0.595 -0.072
BL (R) Bayesian linear MultiGS-R 0.350 0.361 0.043 0.436 0.575 0.047 0.613 0.635 0.306
BayesA (R) Bayesian linear MultiGS-R 0.336 0.361 0.035 0.483 0.615 0.006 0.541 0.626 0.393
BayesB (R) Bayesian linear MultiGS-R 0.360 0.372 0.028 0.487 0.660 0.041 0.590 0.602 0.344
BayesC (R) Bayesian linear MultiGS-R 0.357 0.370 0.050 0.507 0.616 0.090 0.582 0.601 0.226
RFR (R) Machine learning MultiGS-R 0.335 0.318 0.251 0.566 0.495 0.251 0.688 0.666 0.197
SVR (R) Machine learning MultiGS-R 0.072 0.255 0.313 0.519 0.644 0.339 0.438 0.471 -0.657
RKHS (R) Kernel-based/Machine learning MultiGS-R 0.381 0.382 0.028 0.556 0.497 0.109 0.621 0.617 -0.097
RFC (R) Machine learning MultiGS-R 0.364 0.350 0.155 0.385 0.462 0.080 0.517 0.513 -0.433
SVC (R) Machine learning MultiGS-R 0.265 0.363 0.272 0.491 0.674 0.120 0.133 0.182 -0.590
R_RRBLUP Linear mixed MultiGS-P 0.362 0.360 0.333 0.505 0.632 0.406 0.579 0.577 0.620
R_GBLUP Linear mixed MultiGS-P 0.411 0.410 0.410 0.530 0.604 0.528 0.086 0.370 0.082
RRBLUP Linear mixed MultiGS-P 0.318 0.333 0.257 0.507 0.630 0.338 0.557 0.558 0.563
ElasticNet Linear MultiGS-P 0.304 0.258 0.291 0.672 0.561 0.450 0.679 0.651 0.631
BRR Bayesian linear regression MultiGS-P 0.361 0.359 0.333 0.561 0.633 0.406 0.578 0.576 0.620
RFR Ensemble of trees MultiGS-P 0.359 0.348 0.277 0.522 0.470 0.638 0.581 0.434 0.125
XGBoost Gradient boosting trees MultiGS-P 0.239 0.164 0.030 0.578 0.344 0.619 0.537 0.519 0.235
LightGBM Gradient boosting trees MultiGS-P 0.217 0.181 0.001 0.559 0.260 0.491 0.657 0.629 0.442
DNNGS Deep learning MultiGS-P 0.352 0.294 0.318 0.747 0.668 0.211 0.699 0.615 0.590
MLPGS Deep learning MultiGS-P 0.265 0.335 0.313 0.559 0.598 0.591 0.604 0.626 0.439
GraphConvGS Deep learning MultiGS-P -0.363 0.201 0.183 -0.486 0.896 0.578 0.569 0.558 0.700
GraphAttnGS Deep learning MultiGS-P 0.164 0.342 -0.340 0.496 0.678 0.812 0.502 0.452 0.183
GraphSAGEGS Deep learning MultiGS-P -0.104 0.238 0.333 0.695 0.730 0.756 0.486 0.567 0.470
GraphFormer Deep learning MultiGS-P 0.212 0.299 0.363 0.655 0.691 0.698 0.661 0.564 0.574
DeepResBLUP Deep learning MultiGS-P 0.218 0.337 0.220 0.519 0.643 0.440 0.590 0.589 0.577
DeepBLUP Deep learning MultiGS-P 0.123 0.309 -0.040 0.522 0.593 0.509 0.569 0.682 0.664
EnsembleGS Deep learning MultiGS-P -0.040 0.248 0.097 0.673 0.685 0.726 0.608 0.618 0.493
DeepGS Deep learning Previously published 0.390 NA NA 0.326 NA NA -0.084 NA NA
CropFormer Deep learning Previously published -0.068 NA NA 0.001 NA NA 0.401 NA NA
DPCFormer Deep learning Previously published 0.133 NA NA 0.565 NA NA 0.446 NA NA
WheatGP Deep learning Previously published 0.000 NA NA 0.034 NA NA -0.147 NA NA
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