

Article

MultiGS: A Comprehensive and User-Friendly Genomic Prediction Platform Integrating Statistical, Machine Learning, and Deep Learning Models for Breeders

Frank M. You ^{1,*}, Chunfang Zheng ¹, John Joseph Zagariah Daniel ¹,
Pingchuan Li ¹, Bunyamin Tar'an ², Sylvie Cloutier ¹

¹ Ottawa Research and Development Centre, Agriculture and Agri-Food Canada,
960 Carling Avenue, Ottawa, ON K1A 0C6, Canada

² Crop Development Centre, Department of Plant Sciences, University of
Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada

* Correspondence: Frank M. You, Email: frank.you@agr.gc.ca;
Tel.: +1- 613-314-2596.

SUPPLEMENTARY METHODS

MultiGS-P

The DL architectures implemented in MultiGS-P are grouped into fully connected, graph-based, hybrid, and BLUP-integrated categories. Each architecture is described below, with documentation of its design rationale and intended use (**Figures S1** and **S2**). All ML and DL models in MultiGS-P are fully configurable through a centralized configuration file (**Table S3**), allowing users to adjust hyperparameters, model depth, learning schedules, and regularization settings without modifying source code. This design facilitates systematic benchmarking and fair comparison across diverse model classes while supporting flexible adaptation to different datasets and breeding scenarios.

DNNGS

Fully connected feedforward neural networks (multilayer perceptrons) have been widely used as baseline DL models for genomic prediction, providing a flexible nonlinear extension of linear mixed models [1]. Our DNNGS follows this established MLP paradigm but is implemented as a compact, reproducible architecture with dropout-based regularization and optional batch normalization. It is designed to accept multiple marker types (SNPs, haplotypes, or PCs) under a unified MultiGS workflow to enable fair cross-model benchmarking (**Figure S1A; Table 1**). The model begins with an input-dropout layer followed by four sequential fully connected blocks with hidden dimensions 512, 256, 128, and 64. Each block consists of a dense layer with ReLU activation, dropout, and optional batch normalization to improve stability. A final dense output layer generates trait predictions. The architecture provides a balance between modeling nonlinear genotype–phenotype relationships and maintaining computational efficiency.

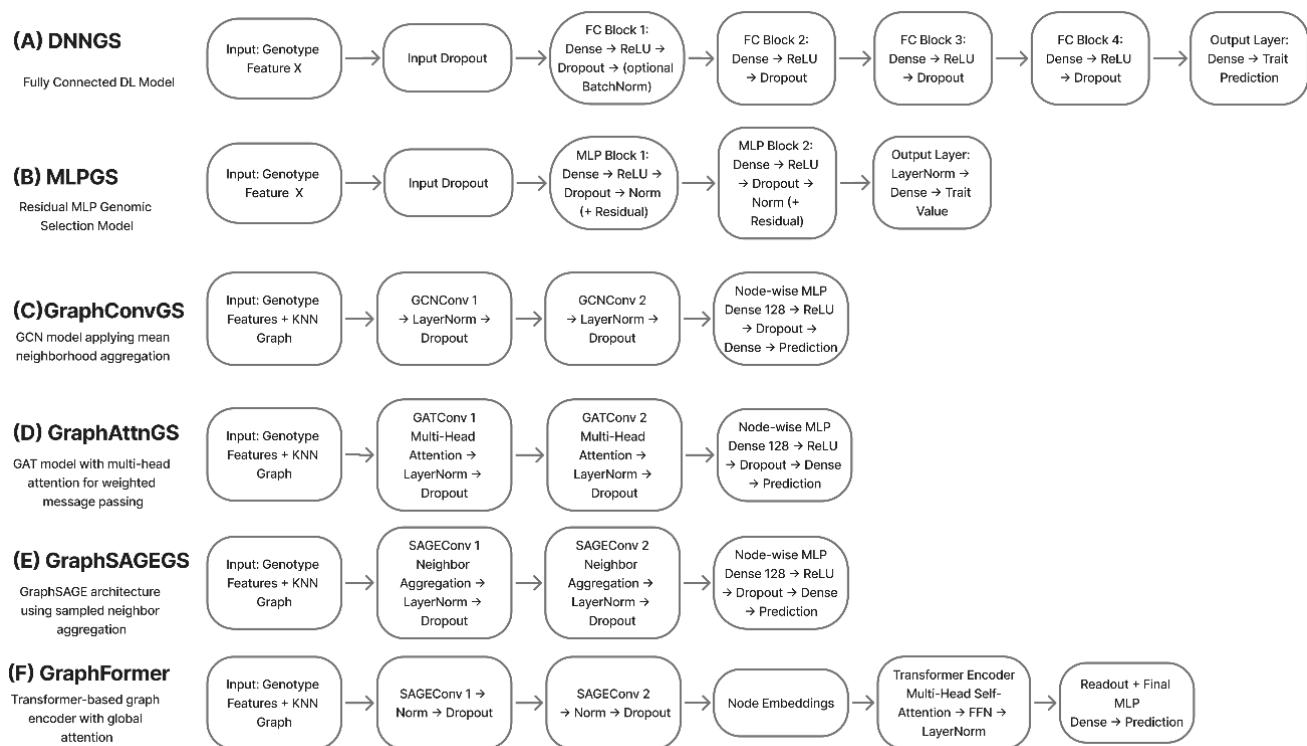


Figure S1. Architectures of two fully connected networks and four graph-based deep learning models for genomic selection: (A) DNNGS, (B) MLPGS, (C) GraphConvGS, (D) GraphAttnGS, (E) GraphSAGEGS, and (F) GraphFormer.

MLPGS

MLPGS is a multilayer perceptron architecture incorporating normalization and optional residual connections to enable stable training on genomic features (Figure S1B; Table 1). The model applies input dropout followed by two fully connected blocks: the first typically includes a 128-unit dense layer with GELU or ReLU activation, dropout, and LayerNorm or BatchNorm; the second block (64 units) follows the same structure. Optional residual connections allow block inputs to be added to outputs when dimensions match. A final normalization step and dense output layer produce trait predictions. This design offers improved regularization and gradient stability compared to conventional MLPs. While MLPs have been previously used as nonlinear genomic prediction models, our MLPGS variant emphasizes training stability and regularization through explicit normalization and residual connections, and its implementation within MultiGS enables fair, reproducible comparison with other model families.

GraphConvGS

Graph neural networks (GNNs) have recently been introduced for genomic prediction to explicitly model genetic relationships among individuals by representing samples as nodes connected through similarity-based edges [2,3]. GraphConvGS follows this paradigm by constructing sample-level k-nearest-neighbor genotype graphs (graph

convolutional network, GCN) and applying graph convolution to aggregate information from genetically similar individuals (**Figure S1C; Table 1**). Individuals are represented as nodes with marker-derived features, and edges encode genetic similarity. The architecture includes two GCNConv layers, each followed by LayerNorm, ReLU activation, and dropout, enabling neighborhood aggregation across genetically similar samples. A node-wise MLP (Dense → ReLU → Dropout → Dense) is applied to the resulting node embeddings to produce trait predictions. GraphConvGS captures relational patterns between individuals that are not available to feature-only models.

GraphAttnGS

Graph attention networks (GATs) were introduced by [4] as an extension of GCNs that learn attention weights over neighbors rather than using uniform or degree-normalized aggregation. GATs are now widely used in biological and population-structure problems where neighbor importance is heterogeneous, however, few GS studies have explored attention-based graph models [3] to address variable genetic similarity and population structure. GraphAttnGS extends GraphConvGS by replacing its convolution layers with GATConv layers, enabling multi-head attention over graph neighbors to learn which neighbors matter most, stabilizing training and capturing multiple “views” of genetic similarity simultaneously (**Figure S1D; Table 1**). Two stacked GATConv layers (each with normalization, activation, and dropout) learn node embeddings by weighting neighbor contributions according to learned attention coefficients. A node-wise MLP produces final predictions. This architecture adaptively highlights the most informative neighbors and models heterogeneous genotype similarity patterns across individuals.

GraphSAGEGS

Unlike transductive GCN- and GAT-based models, GraphSAGEGS summarizes local neighborhood information through learned aggregation functions, providing robust performance when predicting genetically distinct or previously unseen populations (**Figure S1E; Table 1**). The architecture includes two SAGEConv layers, each followed by normalization, activation, and dropout. A node-level MLP then maps these embeddings to predicted trait values. By aggregating summary statistics from each node’s local neighborhood, GraphSAGEGS provides efficient and robust performance, especially in across-population prediction scenarios.

GraphFormer

Hybrid graph–Transformer architectures have recently emerged as an effective strategy for combining local message passing with global self-attention, enabling simultaneous modeling of neighborhood structure and long-range dependencies [5,6]. However, few genomic selection pipelines integrate both components within a unified and systematically

benchmarked framework. GraphFormer adopts this strategy by combining GraphSAGE-based local aggregation with Transformer-style global attention across individuals. Specifically, two SAGEConv layers are first applied to generate node embeddings that capture local genetic neighborhoods. These embeddings are then processed by a Transformer encoder, typically comprising two layers with multi-head self-attention and feed-forward networks, to model global interactions among all individuals. A readout module followed by a final MLP produces trait predictions. By explicitly separating local relational learning from global interaction modeling, GraphFormer captures both fine-scale genetic structure and long-range population-level dependencies within the population graph (**Figure S1F; Table 1**).

DeepResBLUP

Hybrid strategies that augment BLUP predictions with nonlinear deep-learning components have been explored such as DLGBLUP [7] to account for genetic effects beyond linear additive assumptions. Building on this concept, DeepResBLUP is designed as a residual learning framework that explicitly models nonlinear deviations from a classical RR-BLUP baseline (**Figure S2A; Table 1**). In DeepResBLUP, RR-BLUP is first fitted to the genotype matrix to generate baseline GEBVs, which are treated as a strong additive prior. These RR-BLUP predictions are then provided as fixed, or optionally weakly trainable, inputs to a deep neural network that is constrained to learn residual corrections rather than replace the linear model. The residual network consists of three fully connected layers (256 → 128 → 64 units) with GELU activation, batch normalization, and dropout. Its output represents the nonlinear residual component, which is combined with the original RR-BLUP prediction through an explicit skip connection to produce the final predictions.

By focusing the deep network on residual signals, DeepResBLUP preserves the interpretability and robustness of RR-BLUP while selectively capturing nonlinear effects not explained by additive marker effects. In addition, the framework provides flexibility by allowing RR-BLUP to be replaced with alternative linear models, enabling residual learning on top of different additive baselines within the same architecture.

DeepBLUP

Recent work has shown that BLUP-style components can be made differentiable and jointly trained with neural networks [8]; DeepBLUP operationalizes this idea for RR-BLUP by embedding an RR-BLUP-initialized linear layer within an end-to-end architecture, with options to fix or fine-tune the BLUP layer and enable a stabilizing skip connection. DeepBLUP integrates RR-BLUP directly into a fully end-to-end trainable neural architecture by implementing it as the first linear layer of the network (**Figure S2B; Table 1**). This RR-BLUP-initialized layer maps marker effects to predictions and can be either fixed or jointly optimized

during training. Unlike DeepResBLUP, RR-BLUP in DeepBLUP is not treated as a standalone baseline but rather as an embedded component within the network. The RR-BLUP layer feeds into a sequence of dense layers (256 → 128 → 64 units) with GELU activation, batch normalization, and dropout, allowing nonlinear feature transformations to be learned directly from the RR-BLUP output. A final dense layer produces the predictions. An optional skip connection may be enabled to stabilize training by adding the RR-BLUP output to the network's final predictions, but the model is fundamentally optimized as a single unified system, rather than as a baseline-plus-residual model.

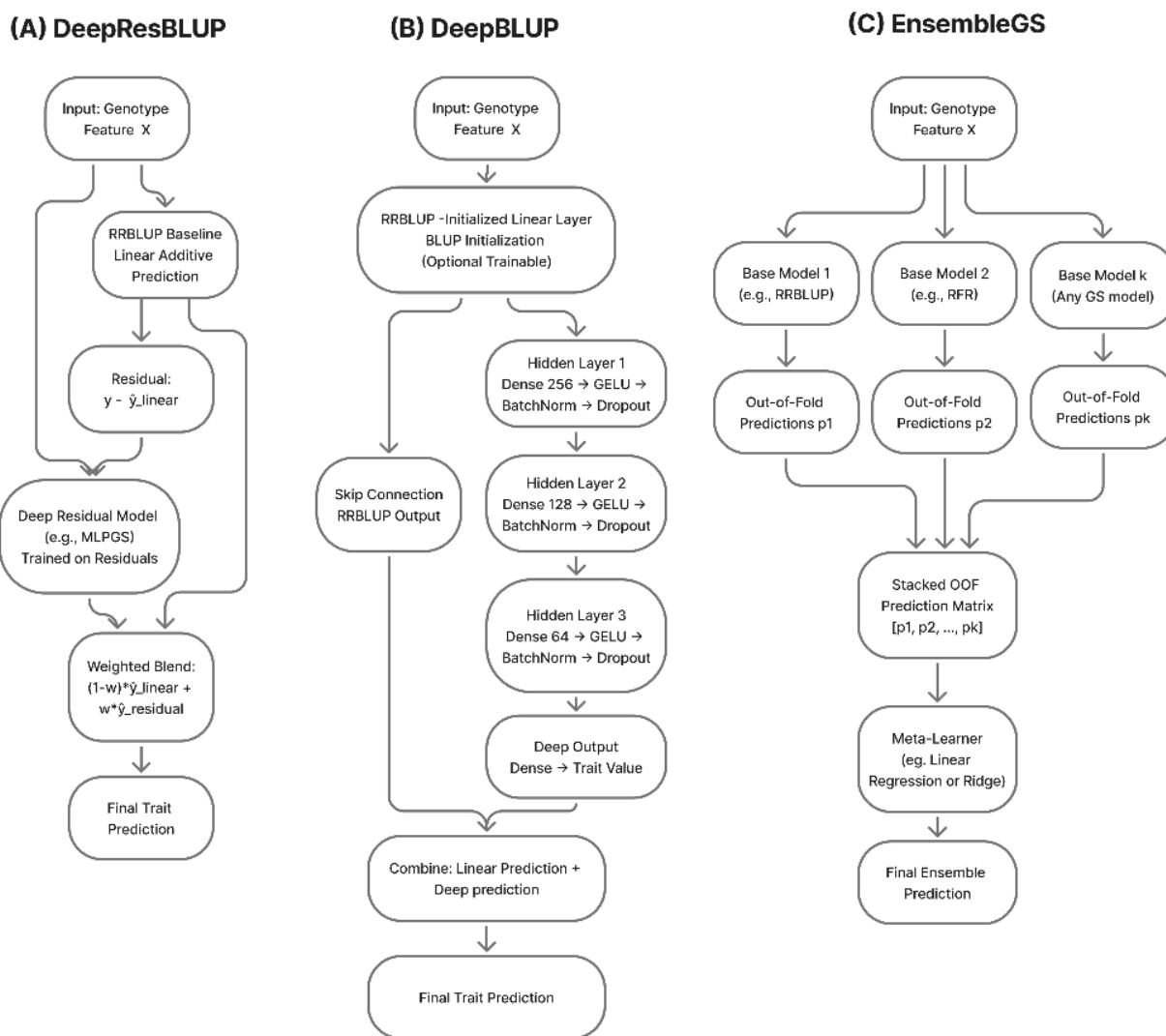


Figure S2. Architectures of three hybrid genomic selection models that integrate linear and deep learning components. (A) DeepResBLUP, (B) DeepBLUP and (C) EnsembleGS.

EnsembleGS

Stacking-based ensemble learning has previously been applied to genomic prediction to improve accuracy and robustness by optimally combining diverse learners using out-of-fold predictions [9, 10].

EnsembleGS extends these approaches by supporting stacking over arbitrary MultiGS models, including linear, ML, DL, and hybrid architectures, within a standardized preprocessing and evaluation workflow (**Figure 2C; Table 1**). Unlike many prior implementations that stack a fixed set of learners, EnsembleGS allows users to flexibly configure both the base-model library and the meta-learner through the MultiGS configuration system.

In EnsembleGS, a set of independent base models (e.g., RR-BLUP, BRR, XGBoost, LightGBM, and DNNGS) implemented in MultiGS-P are trained to generate out-of-fold (OOF) predictions, which are concatenated into a stacked prediction matrix. A meta-learner—by default linear regression, though alternative learners are supported—is then trained on this matrix to produce final predictions. During inference, predictions from the trained base models are passed through the meta-learner to yield the ensemble output. By leveraging complementary strengths across linear, ML, and DL models, EnsembleGS typically provides improved stability and robustness of prediction performance across traits and datasets, consistent with previous stacking ensemble applications in genomic prediction.

Supplementary Figures and Tables

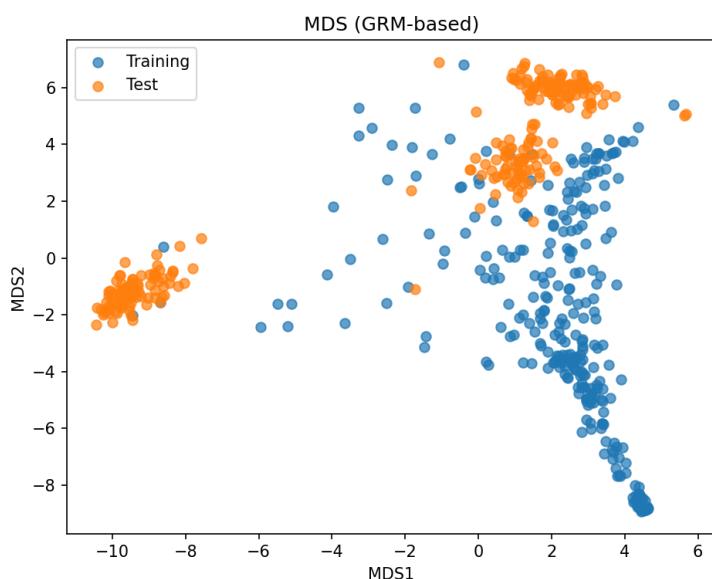


Figure S3. Multidimensional scaling (MDS) analysis based on the genomic relationship matrix (GRM) for 278 training lines (flax287) and 260 test lines from three biparental populations, showing pronounced genetic structure between the two sets.

Table S1. Linear and machine learning models implemented in MultiGS-R.

Model name	Full name	Model category	Core algorithm	Key features	R package
RR-BLUP	Ridge Regression Best Linear Unbiased Prediction	Linear mixed model	Penalized linear regression with ridge penalty	Assumes equal variance of marker effects; computationally efficient baseline	<i>rrBLUP</i>
GBLUP	Genomic Best Linear Unbiased Prediction	Linear mixed model	Genomic relationship matrix-based BLUP	Models additive genetic relationships using genomic kinship	<i>BGLR</i>
BRR	Bayesian Ridge Regression	Bayesian linear model	Bayesian ridge regression	Shrinkage of marker effects with Gaussian prior	<i>BGLR</i>
BL	Bayesian LASSO	Bayesian linear model	LASSO with Laplace prior	Allows variable shrinkage across markers	<i>BGLR</i>
BayesA	BayesA	Bayesian linear model	Marker-specific variance model	Heavy-tailed priors capture large-effect loci	<i>BGLR</i>
BayesB	BayesB	Bayesian linear model	Mixture model with spike-and-slab prior	Performs variable selection by excluding many markers	<i>BGLR</i>
BayesC	BayesC	Bayesian linear model	Modified BayesB with shared variance	Improved stability and reduced sensitivity to hyperparameters	<i>BGLR</i>
RKHS	Reproducing Kernel Hilbert Space regression	Kernel-based model/ML	Gaussian kernel regression	Captures nonlinear and epistatic effects	<i>BGLR</i>
RFR	Random Forest Regression	ML	Ensemble of decision trees	Captures nonlinear interactions; robust to noise	<i>randomForest</i>
RFC	Random Forest Classification	ML	Ensemble of decision trees	Used for categorical trait prediction	<i>randomForest</i>
SVR	Support Vector Regression	ML	Kernel-based margin regression	Effective in high-dimensional settings	<i>e1071</i>
SVC	Support Vector Classification	ML	Kernel-based classification	Used for binary or multiclass traits	<i>e1071</i>

rrBLUP: Endelman JB [11]; *BGLR*: Perez P and de los Campos G [12]; *randomForest*: Liaw A and Wiener M [13]; *e1071*: Meyer D, Dimitriadou E, Hornik K, Weingessel A and Leisch F [14].

Table S2. Summary of eight linear and machine learning models implemented in MultiGS-P.

Model	Architecture / Type	Core Algorithm/ Method	Key Features	Best Use Cases
R_RRBLUP	Linear Mixed Model (R)	Ridge regression BLUP via R package <i>rrBLUP</i>	Widely validated baseline	Additive traits
R_GBLUP	Linear Mixed Model (R)	Genomic relationship kernel BLUP	Captures population structure	Standard GS benchmark
RRBLUP	Linear regression (Python)	Ridge regression	Consistent with R version	Additive effects
ElasticNet	Linear model (L1+L2)	Elastic-net regularization	Feature shrinkage	Sparse/noisy SNP effects
BRR	Bayesian linear regression	Gaussian priors	Uncertainty estimation	Moderate shrinkage traits
RFR	Ensemble of trees	Random Forest	Nonlinear interactions	Epistasis / nonlinear
XGBoost	Gradient boosting trees	Additive boosting	Handles complex patterns	Large SNP sets
LightGBM	Gradient boosting trees	Histogram-based boosting	Fast, scalable	High-dimensional SNPs

Table S3. Default hyperparameter settings for the machine learning and deep learning models implemented in MultiGS-P.

[Hyperparameters_R_RRBLUP]

method = REML #REML|ML

[Hyperparameters_R_GBLUP]

method = REML #REML|ML

[Hyperparameters_RRBLUP]

lambda_value = None

method = mixed_model

lambda_method = auto # Options: auto|reml|heritability|fixed

tol = 1e-8

[Hyperparameters_ElasticNet]

Reduce regularization for ElasticNet: from, 1 to 0.1->0.01->0.001

alpha = 1.0

l1_ratio = 0.1 # toward ridge: from 0.5 to 0.1-0.3

[Hyperparameters_LASSO]

alpha = 1.0

[Hyperparameters_XGBoost]

n_estimators = 100

max_depth = 6

learning_rate = 0.1

subsample = 0.8

colsample_bytree = 0.8

random_state = 42

[Hyperparameters_LightGBM]

n_estimators = 100

max_depth = -1

learning_rate = 0.1

num_leaves = 31

subsample = 0.8

colsample_bytree = 0.8

random_state = 42

[Hyperparameters_MLPGS]

hidden_layers = 1024,512,256

activation = gelu

```
norm = layer
residual = true
input_dropout = 0.05
dropout = 0.5

learning_rate = 0.0005
weight_decay = 0.0015
batch_size = 16
epochs = 300
early_stopping_patience = 20
warmup_ratio = 0.1
grad_clip = 1.0
seeds = 3
use_hubert = true
huber_delta = 1.0
swa = true
swa_start = 0.7
swa_freq = 1
```

```
[Hyperparameters_DNNs]
hidden_layers = 512,256,128,64
learning_rate = 0.001
batch_size = 32
epochs = 300
dropout = 0.3
activation = gelu
batch_norm = true
weight_decay = 0.0001
input_dropout = 0.1
```

```
[Hyperparameters_GraphConvGS]
hidden_channels = 128
num_layers = 2
hidden_mlp = 128
dropout = 0.2
learning_rate = 0.0005
epochs = 500
top_k = 20
graph_method = knn
knn_metric = euclidean
patience = 20
```

[Hyperparameters_GraphAttnGS]

```
hidden_channels = 128
num_layers = 2
heads = 4
hidden_mlp = 128
dropout = 0.2
learning_rate = 0.0005
epochs = 500
top_k = 20
graph_method = knn
knn_metric = euclidean
patience = 20
```

[Hyperparameters_GraphSAGEGS]

```
hidden_channels = 128
num_layers = 2
hidden_mlp = 128
dropout = 0.2
learning_rate = 0.0005
epochs = 500
top_k = 20
graph_method = knn
knn_metric = euclidean
aggr = mean
patience = 20
```

[Hyperparameters_GraphFormer]

```
#GraphFormer:
gnn_type = SAGE          # Choose: SAGE|GraphConvGS|GraphAttnGS
gnn_hidden = 128          # Output size of GNN layer
transformer_layers = 2     # Number of transformer layers
d_model = 128             # Transformer dimension
nhead = 4                 # Number of attention heads
mlp_hidden = 128           # MLPGS hidden size
learning_rate = 0.001
epochs = 500
patience = 30
dropout = 0.1
weight_decay = 0.001
graph_method = knn
knn_metric = euclidean
top_k = 30
```

```
[Hyperparameters_DeepResBLUP]
```

```
base_model = R_RRBLUP
dl_model = MLPGS      # MLPGS|DNNGS|AttnCNNGS|hybrid (hybrid: marker-transformer + optional
sample GNN, very slow)
dl_hidden_layers = 128,64
dl_dropout = 0.2
dl_learning_rate = 0.001
dl_batch_size = 32
dl_epochs = 100
```

```
[Hyperparameters_DeepBLUP]
```

```
rrblup_lambda = 0.001
dl_hidden_layers = 128,64,32
dropout = 0.3
activation = gelu
use_precomputed_rrblup = true
train_rrblup_layer = true
learning_rate = 0.0001
batch_size = 16
epochs = 200
weight_decay = 0.0001
use_batch_norm = true
use_residual_connections = true
```

```
[Hyperparameters_EnsembleGS]
```

```
# models available for stacking
# 'R_RRBLUP', 'R_GBLUP', 'RRBLUP',
# 'ElasticNet', 'RFR', 'BRR',
# 'XGBoost', 'LightGBM',
# 'DNNGS', 'AttnCNNGS', 'MLPGS',
# 'GraphConvGS','GraphAttnGS', 'GraphSAGEGS',
# 'GraphFormer', 'Transformer',
# 'DeepResBLUP', 'DeepBLUP',
base_models = R_RRBLUP,ElasticNet,LightGBM, MLPGS, GraphSAGEGS
meta_model = linear    # linear|ridge
meta_alpha = 1.0
```

Table S4. Genetic diversity and population differentiation between training and test sets across three datasets.

Dataset	Population	Nucleotide diversity (π)	Heterozygosity (H_o)	Number of SNPs	Number of individuals	<i>FST</i> (training vs. test)
Wheat2000	Training	0.1353	0.0189	9,927	4,000	-9.14×10^{-6}
	Test	0.1340	0.0184	9,927	1,600	
Maize6000	Training	0.3003	0.3811	10,000	4,664	-0.001
	Test	0.2990	0.3795	10,000	1,167	
Flax287	Training	0.3850	0.0142	33,596	287	0.2666
	Test	0.3716	0.0062	33,596	260	

FST: Fixation index.

Table S5. Prediction accuracies of five traits across models implemented in MultiGS-P, evaluated using a wheat training set of 1,600 accessions and a testing set of 400 randomly selected accessions genotyped with a randomly selected set of 10,000 SNP markers.

Model	Model type	Tool	Grain hardness (GH)		Grain length (GL)		Grain protein (GP)		Grain width (GW)		Thousand-kernel weight (TKW)	
			SNP	PC	SNP	PC	SNP	PC	SNP	PC	SNP	PC
RR-BLUP (R)	Linear mixed	MultiGS-R	0.584	0.581	0.725	0.721	0.500	0.510	0.743	0.739	0.657	0.644
GBLUP (R)	Linear mixed	MultiGS-R	0.587	0.485	0.720	0.679	0.504	0.469	0.742	0.679	0.647	0.612
BRR (R)	Bayesian linear	MultiGS-R	0.586	0.487	0.716	0.678	0.507	0.469	0.743	0.677	0.643	0.614
BL (R)	Bayesian linear	MultiGS-R	0.588	0.550	0.716	0.709	0.504	0.481	0.746	0.721	0.644	0.641
BayesA (R)	Bayesian linear	MultiGS-R	0.585	0.555	0.719	0.709	0.505	0.478	0.747	0.722	0.645	0.641
BayesB (R)	Bayesian linear	MultiGS-R	0.588	0.543	0.716	0.693	0.500	0.475	0.747	0.712	0.644	0.621
BayesC (R)	Bayesian linear	MultiGS-R	0.587	0.518	0.716	0.645	0.504	0.473	0.741	0.677	0.644	0.594
RFR (R)	Machine learning	MultiGS-R	0.613	0.569	0.743	0.731	0.528	0.533	0.757	0.740	0.668	0.665
SVR (R)	Machine learning	MultiGS-R	0.513	0.470	0.650	0.657	0.416	0.454	0.679	0.683	0.569	0.566
RKHS (R)	Kernel-based/Machine learning	MultiGS-R	0.585	0.500	0.715	0.691	0.506	0.465	0.738	0.655	0.656	0.604
RFC (R)		MultiGS-R	0.595	0.542	0.671	0.662	0.491	0.473	0.611	0.563	0.589	0.573
SVC (R)		MultiGS-R	0.498	0.410	0.638	0.601	0.430	0.442	0.558	0.495	0.553	0.562
R_RRBLUP	Linear mixed	MultiGS-P	0.586	0.592	0.717	0.710	0.504	0.505	0.739	0.736	0.644	0.638
R_GBLUP	Linear mixed	MultiGS-P	0.183	0.183	0.153	0.151	0.099	0.097	0.237	0.237	0.140	0.139
RRBLUP	Linear mixed	MultiGS-P	0.582	0.588	0.716	0.700	0.491	0.482	0.740	0.723	0.640	0.615
ElasticNet	Linear	MultiGS-P	0.477	0.518	0.617	0.657	0.386	0.459	0.683	0.698	0.561	0.606
BRR	Bayesian linear regression	MultiGS-P	0.586	0.592	0.717	0.710	0.504	0.505	0.739	0.736	0.644	0.638
RFR	Ensemble of trees	MultiGS-P	0.573	0.540	0.726	0.730	0.529	0.529	0.732	0.736	0.656	0.660
XGBoost	Gradient boosting trees	MultiGS-P	0.605	0.577	0.721	0.730	0.462	0.514	0.743	0.721	0.639	0.646
LightGBM	Gradient boosting trees	MultiGS-P	0.623	0.565	0.726	0.721	0.471	0.486	0.740	0.716	0.646	0.633
DNNGS	Deep learning	MultiGS-P	0.537	0.541	0.722	0.716	0.496	0.473	0.722	0.715	0.655	0.615
MLPGS	Deep learning	MultiGS-P	0.494	0.559	0.671	0.716	0.406	0.512	0.681	0.747	0.608	0.650
GraphConvGS	Deep learning	MultiGS-P	0.501	0.468	0.553	0.497	0.404	0.382	0.624	0.591	0.542	0.409
GraphAttnGS	Deep learning	MultiGS-P	0.425	0.465	0.564	0.596	0.341	0.395	0.601	0.602	0.497	0.495
GraphSAGEGS	Deep learning	MultiGS-P	0.544	0.589	0.696	0.659	0.450	0.453	0.706	0.712	0.632	0.608
GraphFormer	Deep learning	MultiGS-P	0.502	0.570	0.685	0.685	0.446	0.497	0.712	0.697	0.603	0.604
DeepResBLUP	Deep learning	MultiGS-P	0.582	0.592	0.718	0.712	0.498	0.499	0.738	0.744	0.644	0.634
DeepBLUP	Deep learning	MultiGS-P	0.538	0.594	0.701	0.682	0.448	0.481	0.722	0.716	0.631	0.620
EnsembleGS	Deep learning	MultiGS-P	0.623	0.569	0.731	0.718	0.482	0.490	0.737	0.723	0.655	0.631
DeepGS	Deep learning	Previously published	0.629	NA	0.727	NA	0.523	NA	0.722	NA	0.669	NA
CropFormer	Deep learning	Previously published	0.510	NA	0.706	NA	0.389	NA	0.703	NA	0.640	NA
WheatGP	Deep learning	Previously published	0.523	NA	0.697	NA	0.013	NA	0.696	NA	0.642	NA

Table S6. Prediction accuracies of three traits across models implemented in MultiGS-P, evaluated using a maize training set of 4,664 lines and a testing set of 1,167 randomly selected lines, and genotyped with 10,000 randomly selected single nucleotide polymorphism (SNP), 5,439 haplotype (HAP) or 313 principal component (PC) markers.

Model	Model Type	Tool	Days to tassel (DTT)			Ear weight (EW)			Plant height (PH)		
			SNP	HAP	PC	SNP	HAP	PC	SNP	HAP	PC
RR-BLUP (R)	Linear mixed	MultiGS-R	0.934	0.930	0.918	0.764	0.759	0.721	0.925	0.923	0.878
GBLUP (R)	Linear mixed	MultiGS-R	0.935	0.931	0.917	0.769	0.762	0.721	0.926	0.924	0.879
BRR (R)	Bayesian linear	MultiGS-R	0.935	0.931	0.917	0.768	0.762	0.721	0.927	0.924	0.879
BL (R)	Bayesian linear	MultiGS-R	0.936	0.932	0.918	0.771	0.765	0.722	0.928	0.926	0.879
BayesA (R)	Bayesian linear	MultiGS-R	0.936	0.933	0.918	0.772	0.767	0.722	0.929	0.926	0.878
BayesB (R)	Bayesian linear	MultiGS-R	0.936	0.933	0.917	0.774	0.768	0.722	0.928	0.927	0.879
BayesC (R)	Bayesian linear	MultiGS-R	0.935	0.932	0.916	0.773	0.764	0.721	0.927	0.927	0.879
RFR (R)	Machine learning	MultiGS-R	0.924	0.921	0.858	0.756	0.746	0.652	0.901	0.900	0.822
SVR (R)	Machine learning	MultiGS-R	0.927	0.925	0.916	0.739	0.742	0.704	0.919	0.920	0.876
RKHS (R)	Kernel-based/Machine learning	MultiGS-R	0.936	0.934	0.932	0.777	0.776	0.775	0.928	0.927	0.923
RFC (R)	Machine learning	MultiGS-R	0.799	0.802	0.725	0.658	0.650	0.625	0.798	0.798	0.748
SVC (R)	Machine learning	MultiGS-R	0.796	0.794	0.782	0.655	0.664	0.655	0.795	0.795	0.761
R_RRBLUP	Linear mixed	MultiGS-P	0.935	0.931	0.915	0.768	0.762	0.715	0.926	0.924	0.873
R_GBLUP	Linear mixed	MultiGS-P	0.612	0.616	0.612	0.404	0.430	0.403	0.567	0.586	0.566
RRBLUP	Linear mixed	MultiGS-P	0.935	0.932	0.915	0.768	0.762	0.716	0.923	0.922	0.874
ElasticNet	Linear	MultiGS-P	0.826	0.824	0.861	0.615	0.587	0.630	0.766	0.758	0.800
BRR	Bayesian linear regression	MultiGS-P	0.935	0.931	0.915	0.768	0.762	0.715	0.926	0.924	0.873
RFR	Ensemble of trees	MultiGS-P	0.904	0.904	0.834	0.726	0.720	0.617	0.883	0.879	0.808
XGBoost	Gradient boosting trees	MultiGS-P	0.937	0.935	0.871	0.788	0.785	0.666	0.925	0.929	0.843
LightGBM	Gradient boosting trees	MultiGS-P	0.937	0.933	0.879	0.791	0.784	0.675	0.929	0.929	0.845
DNNGS	Deep learning	MultiGS-P	0.927	0.932	0.922	0.753	0.763	0.726	0.912	0.919	0.897
MLPGS	Deep learning	MultiGS-P	0.902	0.913	0.914	0.709	0.744	0.730	0.871	0.898	0.890
GraphConvGS	Deep learning	MultiGS-P	0.843	0.840	0.857	0.599	0.591	0.600	0.773	0.760	0.785
GraphAttnGS	Deep learning	MultiGS-P	0.819	0.844	0.811	0.517	0.568	0.523	0.739	0.730	0.740
GraphSAGEGS	Deep learning	MultiGS-P	0.917	0.908	0.913	0.740	0.752	0.726	0.909	0.909	0.881
GraphFormer	Deep learning	MultiGS-P	0.920	0.918	0.911	0.741	0.746	0.723	0.909	0.910	0.886
DeepResBLUP	Deep learning	MultiGS-P	0.934	0.932	0.925	0.766	0.762	0.747	0.924	0.923	0.900
DeepBLUP	Deep learning	MultiGS-P	0.935	0.929	0.926	0.768	0.758	0.765	0.924	0.917	0.908
EnsembleGS	Deep learning	MultiGS-P	0.919	0.903	0.901	0.745	0.752	0.720	0.914	0.911	0.881
DeepGS	Deep learning	Previously published	0.934	NA	NA	0.764	NA	NA	0.925	NA	NA
CropFormer	Deep learning	Previously published	0.914	NA	NA	0.692	NA	NA	0.898	NA	NA
DPCFormer	Deep learning	Previously published	0.892	NA	NA	0.686	NA	NA	0.843	NA	NA
WheatGP	Deep learning	Previously published	0.843	NA	NA	0.765	NA	NA	0.923	NA	NA

Table S7. Prediction accuracies of three traits across models implemented in MultiGS, evaluated using a flax training set of 278 accessions from a core collection and a testing set of 260 biparental inbred lines, with 7,363 haplotype markers derived from 33,895 common SNPs.

Model	Model type	Tool	Days to maturity (DTM)			Oil content (OIL)			Plant height (PH)		
			SNP	HAP	PC	SNP	HAP	PC	SNP	HAP	PC
RR-BLUP (R)	Linear mixed	MultiGS-R	0.359	0.367	0.372	0.508	0.661	0.498	0.540	0.590	0.553
GBLUP (R)	Linear mixed	MultiGS-R	0.325	0.343	0.047	0.450	0.596	0.095	0.553	0.605	-0.058
BRR (R)	Bayesian linear	MultiGS-R	0.336	0.383	0.063	0.495	0.661	0.089	0.540	0.595	-0.072
BL (R)	Bayesian linear	MultiGS-R	0.350	0.361	0.043	0.436	0.575	0.047	0.613	0.635	0.306
BayesA (R)	Bayesian linear	MultiGS-R	0.336	0.361	0.035	0.483	0.615	0.006	0.541	0.626	0.393
BayesB (R)	Bayesian linear	MultiGS-R	0.360	0.372	0.028	0.487	0.660	0.041	0.590	0.602	0.344
BayesC (R)	Bayesian linear	MultiGS-R	0.357	0.370	0.050	0.507	0.616	0.090	0.582	0.601	0.226
RFR (R)	Machine learning	MultiGS-R	0.335	0.318	0.251	0.566	0.495	0.251	0.688	0.666	0.197
SVR (R)	Machine learning	MultiGS-R	0.072	0.255	0.313	0.519	0.644	0.339	0.438	0.471	-0.657
RKHS (R)	Kernel-based/Machine learning	MultiGS-R	0.381	0.382	0.028	0.556	0.497	0.109	0.621	0.617	-0.097
RFC (R)	Machine learning	MultiGS-R	0.364	0.350	0.155	0.385	0.462	0.080	0.517	0.513	-0.433
SVC (R)	Machine learning	MultiGS-R	0.265	0.363	0.272	0.491	0.674	0.120	0.133	0.182	-0.590
R_RRBLUP	Linear mixed	MultiGS-P	0.362	0.360	0.333	0.505	0.632	0.406	0.579	0.577	0.620
R_GBLUP	Linear mixed	MultiGS-P	0.411	0.410	0.410	0.530	0.604	0.528	0.086	0.370	0.082
RRBLUP	Linear mixed	MultiGS-P	0.318	0.333	0.257	0.507	0.630	0.338	0.557	0.558	0.563
ElasticNet	Linear	MultiGS-P	0.304	0.258	0.291	0.672	0.561	0.450	0.679	0.651	0.631
BRR	Bayesian linear regression	MultiGS-P	0.361	0.359	0.333	0.561	0.633	0.406	0.578	0.576	0.620
RFR	Ensemble of trees	MultiGS-P	0.359	0.348	0.277	0.522	0.470	0.638	0.581	0.434	0.125
XGBoost	Gradient boosting trees	MultiGS-P	0.239	0.164	0.030	0.578	0.344	0.619	0.537	0.519	0.235
LightGBM	Gradient boosting trees	MultiGS-P	0.217	0.181	0.001	0.559	0.260	0.491	0.657	0.629	0.442
DNNGS	Deep learning	MultiGS-P	0.352	0.294	0.318	0.747	0.668	0.211	0.699	0.615	0.590
MLPGS	Deep learning	MultiGS-P	0.265	0.335	0.313	0.559	0.598	0.591	0.604	0.626	0.439
GraphConvGS	Deep learning	MultiGS-P	-0.363	0.201	0.183	-0.486	0.896	0.578	0.569	0.558	0.700
GraphAttnGS	Deep learning	MultiGS-P	0.164	0.342	-0.340	0.496	0.678	0.812	0.502	0.452	0.183
GraphSAGEGS	Deep learning	MultiGS-P	-0.104	0.238	0.333	0.695	0.730	0.756	0.486	0.567	0.470
GraphFormer	Deep learning	MultiGS-P	0.212	0.299	0.363	0.655	0.691	0.698	0.661	0.564	0.574
DeepResBLUP	Deep learning	MultiGS-P	0.218	0.337	0.220	0.519	0.643	0.440	0.590	0.589	0.577
DeepBLUP	Deep learning	MultiGS-P	0.123	0.309	-0.040	0.522	0.593	0.509	0.569	0.682	0.664
EnsembleGS	Deep learning	MultiGS-P	-0.040	0.248	0.097	0.673	0.685	0.726	0.608	0.618	0.493
DeepGS	Deep learning	Previously published	0.390	NA	NA	0.326	NA	NA	-0.084	NA	NA
CropFormer	Deep learning	Previously published	-0.068	NA	NA	0.001	NA	NA	0.401	NA	NA
DPCFormer	Deep learning	Previously published	0.133	NA	NA	0.565	NA	NA	0.446	NA	NA
WheatGP	Deep learning	Previously published	0.000	NA	NA	0.034	NA	NA	-0.147	NA	NA

REFERENCES

1. Montesinos-Lopez OA, Montesinos-Lopez A, Perez-Rodriguez P, Barron-Lopez JA, Martini JWR, Fajardo-Flores SB, et al. A review of deep learning applications for genomic selection. *BMC Genom.* 2021;22:19.
2. Kihlman R, Launonen I, Sillanpaa MJ, Waldmann P. Sub-sampling graph neural networks for genomic prediction of quantitative phenotypes. *G3* 2024;14.
3. He X, Wang K, Zhang L, Zhang D, Yang F, Zhang Q, Pan S, et al. HGATGS: Hypergraph attention network for crop genomic selection. *Agriculture* 2025;15:409.
4. Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y. Graph attention network. *arXiv* 2018;1710.10903.
5. Gao R, He W, Yan L, Liu D, Yu Y, Ye Z: Hybrid graph transformer networks for multivariate time series anomaly detection. *J. Supercomput.* 2023;80:642-69.
6. Ramezankhani M, Patel JM, Deodhar A, Birru D. GITO: Graph-informed transformer operator for learning complex partial differential equations. *arXiv* 2025;2506.13906v13901.
7. Shokor F, Croiseau P, Gangloff H, Saintilan R, Tribout T, Mary-Huard T, Cuyabano BCD. Deep learning and genomic best linear unbiased prediction integration: An approach to identify potential nonlinear genetic relationships between traits. *J Dairy Sci.* 2025;108:6174-89.
8. Guhlin J, Dearden P. D-BLUP: a differentiable genomic BLUP model with learnable variance and marker weights. *bioRxiv* 2025;2025.2011.2025.690542v690541.
9. Nascimento M, Nascimento ACC, Azevedo CF, de Oliveira ACB, Caixeta ET, Jarquin D. Enhancing genomic prediction with Stacking Ensemble Learning in Arabica Coffee. *Front Plant Sci* 2024;15:1373318.
10. Liang M, Chang T, An B, Duan X, Du L, Wang X, Miao J, et al. A stacking ensemble learning framework for genomic prediction. *Front Genet.* 2021;12:600040.
11. Endelman JB. Ridge regression and other kernels for genomic selection with R package rrBLUP. *Plant Genome.* 2011, 4:250–255.
12. Perez P, de los Campos G. Genome-wide regression and prediction with the BGLR statistical package. *Genetics.* 2014, 198:483-495.
13. Liaw A, Wiener M. Classification and regression by randomForest. *R News* 2002;2:18–22.
14. Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F. e1071: Misc functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R package version 1.7-14; 2023.