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ABSTRACT 

Soil health is vital to both food security and ecological stability and 
represents a key research frontier in soil science. However, the 
implications of soil health remain unclear and are often conflated with soil 
quality. In this study, plant growth performance was used as an indicator 
of soil health, assuming that better plant growth reflects healthier soil. We 
compared the growth rates of Dodonaea viscosa (L.) Jacq. in two different 
soil types—yellow-brown soil (Luvisols) with good soil quality (higher 
fertility), and dry red soil (Lixisols) with lower soil quality (lower fertility). 
Plants were grown in both untreated and treated soils, with treatments 
including nitrogen (N), phosphorus (P), combined nitrogen-phosphorus 
(NP) addition, and arbuscular mycorrhizal fungi (AMF) inoculation in pot 
experiments. Soil quality was evaluated using the soil quality index. Our 
results show that the addition of limiting nutrients (N or P) and AMF 
significantly enhanced plant growth in both soils. However, D. viscosa 
consistently showed poorer growth in the yellow-brown soil than in the 
dry-red soil. This suggests that the yellow-brown soil, despite its higher soil 
quality, had a lower overall health. These findings highlight the distinction 
between soil health and quality and indicate that higher fertility does not 
necessarily equate to better soil health. Moreover, soil health appears to 
be plant species-specific, because different plant species respond 
differently to various soil conditions. Thus, advancing soil health 
initiatives should prioritise the identification of plant species that are most 
compatible with the specific attributes of the soil. 
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INTRODUCTION 

Healthy soil is vital for sustainable food production, biodiversity, and 
ecological security. However, reports indicate that at least 33% of the 
world’s arable soil is degraded, and soil health is increasingly threatened 
[1]. It is projected that 90% of the world's soil will be degraded by 2050 [2]. 
Thus, conserving soil health is crucial for achieving Sustainable 
Development Goals (SDGs), and has become a research hotspot in soil 
science [3–5]. 

Soil health was put forward by British ecologist Balfour in his 1947 book 
“Soil for Life”; different scholars defined different connotations of soil 
health—The prevailing view among researchers is that soil health 
represents the soil’s sustained capacity to support biological productivity, 
enhance air and water quality, and contribute to the health of plants, 
animals, and humans [6]. Researchers have varying perspectives on soil 
health. According to Mocek [7], “It refers to the soil’s ability to function as 
a dynamic living system within the limits of its ecosystem and land use, 
supporting the productivity of plants and animals, preserving or 
improving the quality of water and air, and fostering the overall health of 
both plant and animal”. Furthermore, the NRCS, USA 
(https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/. Accessed 
on 21 Apr 2025) defines soil health—also known as soil quality (SQ)—as 
the ongoing ability of soil to operate as a vital, living ecosystem that 
supports the growth and sustainability of plants, animals, and humans. 
Most researchers believe that “soil quality” is synonymous with “soil 
health” [8]. 

When we assess SH, we refer to agricultural soil health, as it is 
associated with several ecosystem services, such as water and nutrient 
regulation, carbon cycling, and food production [9]. Soil health is typically 
assessed by formulating a holistic soil health index (SHI) composed of key 
soil attributes. SHI systems typically include physical, chemical, and 
biological performance indicators [10–13]. However, some scholars have 
suggested that soil health evaluation indicators should not only be limited 
to soil physical and chemical health indicators but that soil biological, 
environmental, ecosystem and human health indicators should also be 
considered [14]. However, researchers have used significantly different 
evaluation indicators [15]. Several scholars [16,17] believe that soil 
pollutants, including heavy metals and emerging contaminants, should be 
considered as indicators of soil health. Furthermore, Rinot [6] proposed an 
evaluation of soil health based on soil functional indicators, such as 
regulation, support, and supply. Hughes [18] argued that soil health 
evaluation, which is essential for soil health management, must account 
for the high spatial variability of soils. Thus, the threshold values for 
assessment indicators should be region-specific. Recent studies [4,14,19,20] 
have considered soil microorganisms as core soil health indicators. 

Several studies have shown that different types and doses of 
fertilisation would lead to different health states in farmland soils. For 
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example, organic, organic-inorganic, and microbial fertilisers generally 
improve soil health [15,21–24], and balanced fertilisation significantly 
improves soil health. However, the application of biological carbon alone 
does not appear to improve soil health [25]. Although significant progress 
has been achieved in soil health research, several challenges remain 
unresolved. For instance, soil scientists, agronomists, and ecologists have 
not reached an agreement on the concept of soil health. Consequently, 
different researchers have different definitions and emphases on soil 
health in different periods and fields. Although “soil health” and “soil 
quality” are often used interchangeably, differences between the two are 
not always well understood. We have often found that different plants 
grow differently in the same soil, suggesting that soil health varies from 
plant to plant. 

Therefore, the hypotheses of this study were as follows: (1) soil health 
and quality are distinct, (2) soil health varies across plant species, and (3) 
nutrient addition and microbial inoculation are unlikely to alter the 
difference of soil health degree between various soils for a specific plant.  

To test these hypotheses, we used plant growth (biomass and other 
indicators) to evaluate soil health [18,26], and our previous study’s related 
results [27]. 

MATERIALS AND METHODS 

Study Site 

The study was carried out at the Yuanmou Research Station 
administered by the Institute of Mountain Hazards and Environment, 
Chinese Academy of Sciences, Chengdu. This field site is geographically 
positioned in Yuanmou County (101°35′–102°05′E, 25°25′–26°07′N), 
situated within the southwestern territory of China. The region represents 
a characteristic dry-hot valley in the lower Jinsha River basin, marked by 
elevated temperatures (mean annual temperature: 20 °C) and low 
humidity (mean annual precipitation: 650 mm).  

The soil types were Lixisols and Luvisols, based on the Food and 
Agriculture Organization of the United Nations (FAO) soil taxonomy, and 
dry red soil and yellow-brown soil, respectively, according to the Chinese 
soil taxonomy. The tested plant is D. viscosa that grow primarily in Lixisols, 
but not in Luvisols. The detailed information were described in our 
previous study [27]. 

Experimental Design 

Test was carried out by pots. All pots (dimensions: upper diameter 26 
cm × lower diameter 16 cm × height 24 cm) were randomly arranged 
within the greenhouse facility. Following an initial saturation irrigation 
protocol (administered until drainage occurred from the base), each 
container received 15–20 Dodonaea viscosa seeds that had undergone 
physical scarification to overcome dormancy prior to sowing. D. viscosa is 
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one kind of typical species in dry-hot valleys in southwest China, 
characterized by high capacity of drought and barren tolerance, and 
widely used for vegetation restoration in this area. The detailed 
information were described in our previous study [27]. 

Nutrient Addition Test 

After two seedlings were growing well in each pot, we started adding 
different nutrients (nitrogen/N and phosphorus/P). There were four types 
of nutrient treatments: (1) Control (CK, no nutrients added); (2) Only 
nitrogen (N) added; (3) Only phosphorus (P) added; (4) Both nitrogen and 
phosphorus (NP) added together. 

Incubation AMF Test 

The experimental design comprised two distinct soil types—high-
altitude yellow brown soil and low-altitude dry red soil—combined with 
three AMF inoculation treatments. Each treatment combination (soil × 
AMF) was replicated six times to ensure statistical robustness. The three 
AMF treatments were: no inoculation of AMF (control), inoculation of Non-
native AMF (purchased strains), and inoculation of native AMF (Collected 
from the rhizosphere soil of D. viscosa). 

The detailed information above were described in our previous study 
[27]. 

Measurements 

Plant height was determined using a standardized measuring tape, 
while stem diameter was recorded with a vernier caliper. Following plant 
maturation, twelve mature leaves of uniform size were randomly selected 
per container and subjected to digital scanning. Leaf area quantification 
was performed using ImageJ software. At harvest, plant tissues were 
manually separated into roots, stems, and leaves. All samples were 
subsequently oven-dried at 80 °C until achieving constant mass, with dry 
biomass recorded. 

Statistical Analysis 

The data collected in this study were statistically analyzed using SPSS 
software (version 19.0), IBM Corporation, Armonk, New York, USA. A 
three-way analysis of variance (ANOVA) was employed to assess the main 
effects and interactions of soil type, nutrient treatment, and AMF 
inoculation on plant growth characteristics, biomass distribution, and leaf 
nutrient concentrations. Prior to conducting the ANOVA, the Shapiro–Wilk 
test was performed to confirm the normality of the data. Additionally, the 
least significant difference (LSD) test was applied to compare variations 
between soil types and among the four nutrient treatments within each 
soil type. 
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RESULTS 

Effects of Nutrient Addition on the Growth of D. viscosa on Two Soil 
Types 

Results showed that except for plant height, the soil type had a 
significant effect on the growth and physiological characteristics of D. 
viscosa (Table 1) [27]. Plant height, leaf area, root and leaf biomasses were 
significantly higher (p < 0.05) in dry red soil than in yellow-brown soil, 
indicating that health of red soil is better than that of yellow-brown soil. 

Table 1. Statistical results of the two-way ANOVA presented as F values and level of significance (p) on D. 
viscosa growth. 

Indicators Soil Type Nutrient Treatment Soil × Nutrient 
F p F p F p 

Height 1.28 0.287 0.97 0.415 2.51 0.034 
Leaf area 5.86 0.005 2.25 0.094 3.84 0.003 

Root biomass 61.42 <0.001 2.89 0.045 2.32 0.048 
Leaf biomass 75.08 <0.001 9.00 <0.001 4.45 0.001 

Effects of AMF Inoculation on the Growth of D. viscosa in Two Soils 

Results showed that soil type, AMF treatment, and the interaction 
between soil and AMF significantly affected the growth, and biomass 
accumulation of D. viscosa (Table 2) [27]. At the end of the experiment, the 
plant height, leaf area and biomasses of D. viscosa in dry red soil was 
significantly (p < 0.05) higher than that in yellow-brown soil, indicating 
that microbial inoculation do not alter status of soil health. 

Table 2. F-value and p-value of two-factor ANOVA for the effects of AMF and soil type on D. viscosa 
growth. 

Indicators Soil Type AMF Soil Type × AMF 
F p F p F p 

Height 34.53 <0.001 2.10 0.141 7.77 0.002 
Leaf area 3.48 0.072 6.47 0.005 3.80 0.034 

Above biomass 136.84 <0.001 122.71 <0.001 49.62 <0.001 
Root biomass 23.34 <0.001 19.41 <0.001 13.47 <0.001 

DISCUSSION 

Soil Health Is not Equal to Soil Quality, and It Is Different for 
Different Plant 

Currently, most researchers believe that soil health is synonymous with 
soil quality [8]. As observed in the present study, the growth rate of D. 
viscosa was lower in yellow-brown soil (higher quality) than in dry red soil 
(lower quality), suggesting that higher soil quality does not necessarily 
equate to healthier soil for a specific plant species. This discrepancy 
emphasises that soil health is not determined solely by physical and 
chemical properties, such as fertility; it is a dynamic, plant-dependent 
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characteristic. Therefore, soil health must be understood in terms of the 
specific plants it supports, as different plant species exhibit distinct 
responses to varying soil conditions. These findings are also supported by 
Lal [28], who stated that the terms soil quality and soil health, while similar, 
should not be used interchangeably. Furthermore, it also aligns with the 
idea that soil health is not an absolute measure, but one that depends on 
biological interactions between soil and plant species [29]. 

Recent studies have confirmed this distinction. For instance, Molefe [30] 
highlighted that soil health is shaped by interactions between plant roots, 
microbial communities, and organic matter, which vary significantly 
across plant species. Similarly, Niu [31] suggested that different plant 
species with varying root architectures and metabolic activities can either 
promote or hinder soil health, further illustrating that soil health is highly 
context-specific and plant-dependent [32]. 

Therefore, we define soil health as: it refers to the ability of a soil to 
continuously provide the necessary physical, chemical and biological 
properties for the healthy life process of a certain type of plant on it. In 
this way, soil health involves specific plants and is an attribute indicator 
within the soil-plant system, it doesn't matter about soil health without 
concerning a plant. On the other hand, soil quality refers to the integrated 
performance of the physical, chemical and biological properties of the soil, 
and does not involve plants. The difference between them can be 
illustrated by the following conceptual model (Figure 1). 

 

Figure 1. Conceptual model contrasting soil health and soil quality based on plant species. 
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Nutrient Addition and Microbial Inoculation Do not Alter the 
Difference of Soil Health Degree between Various Soils for a Specific 
Plant 

Soil nutrient incompatibility or the lack of certain microorganisms 
hinders plant growth [27]. In this study, we found that while the addition 
of nitrogen and phosphorus, as well as the inoculation of AMF, positively 
affected the growth of D. viscosa, these interventions did not alter the 
overall health of the soil in which the plant grew. Despite improvements 
in growth performance, especially in the yellow-brown soil, the soil health 
of D. viscosa remained inferior to that of the dry red soil (Figure 2). These 
results suggest that nutrient and microbial adjustments can enhance soil 
quality by improving the availability of essential nutrients or by fostering 
beneficial microbial activities. However, these adjustments do not 
fundamentally alter the soil health of a given plant species, particularly 
when the intrinsic biological properties of the soil are not conducive to 
optimal plant growth. 

 

Figure 2. Growth performance of D. viscosa after nitrogen and phosphorus nutrient addition and 
inoculation with AMF. 

This finding is consistent with those of other recent studies 
emphasising that soil health is largely driven by biological factors such as 
microbial diversity and activity, which can be difficult to modify through 
external interventions such as nutrients. For example, some researchers 
[30,33,34] have argued that nutrient addition can enhance plant growth; 
however, the inherent biological conditions of the soil, such as microbial 
populations, play a more significant role in determining long-term soil 
health. Furthermore, the work by Wahab [35] on mycorrhizal fungi 
highlights that microbial inoculation can enhance plant growth and 
nutrient uptake but may not necessarily improve soil health if the 
fundamental soil structure or microbial community is not aligned with 
plant needs [36,37]. 

Plant-Soil Interactions and the Dynamic Nature of Soil Health 

As we known, plant and soil always interacted, thus, there is need for 
plant-specific indicators of soil health [38]. The role of crop roots and 
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their associated microbial communities in soil health is crucial and cannot 
be underestimated. Plants have a major impact on soil ecosystems through 
their root systems, which not only provide a physical structure but also 
affect microbial communities in the soil. Studies [30,39] have shown that 
plants with extensive root systems can improve soil health by promoting 
microbial diversity, nutrient cycling, and organic matter degradation. In 
addition, trees and deeply rooted crops contribute to improved soil 
porosity and organic material content, thereby promoting a more stable 
and healthy soil environment [40,41]. Furthermore, other researchers 
have reported that soil health is strongly related to soil biological diversity, 
including microbial populations that are directly affected by plant root 
exudates and other biological interactions [42,43]. Therefore, soil health 
cannot be effectively managed by exclusively focusing on its physical and 
chemical properties [28]. Instead, an integrated approach that considers 
plant diversity, microbial health, and ecosystem management is required 
[44]. 

The differences between soil health and quality are primarily 
applicable to sustainable soil management. Although soil quality provides 
a measure of the soil’s potential to support plant growth, soil health offers 
a more holistic understanding of soil function and sustainability [45]. 
Sustainable farming practices, such as crop rotation, forestry, and the use 
of biological changes, can promote soil health by promoting microbial 
diversity and improving the nutrient cycle [46]. Moreover, the findings of 
our study emphasise that soil health is not a unique concept but depends 
on specific plant species and their interactions with the soil environment. 

CONCLUSIONS 

Our findings highlight that soil health is a dynamic and plant-specific 
attribute that extends beyond traditional measures of soil quality. 
Although nutrient addition and microbial inoculation can promote plant 
growth, they may not necessarily alter the fundamental health of the soil 
for a given plant. Soil health is influenced by a range of complex biological 
interactions between plants, microorganisms, and soil properties and 
plays an vital role in long-term agricultural sustainability. Future research 
should focus on balancing land management practices to enhance both 
soil quality and health through the careful selection and management of 
plant species. 
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