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ABSTRACT 

While wind energy production loss due to turbine unavailability, 
environmental impacts, curtailment, and other causes has been studied 
and characterized at the utility-scale wind farm level, observation-based 
characterization of project loss is lacking for distributed wind energy, 
particularly for projects involving small wind turbines. Contemporary 
tools and research that support pre-construction distributed wind energy 
characterization present a wide range of default loss factors to convert 
gross energy estimates to net: 7–18%. Our goal is to use generation 
observations from operational distributed wind projects to develop more 
accurate representations of energy loss, along with an improved 
understanding of year-to-year loss variability, for this understudied sector 
of wind energy. Using a density-based filtering technique on distributed 
wind power generation timeseries, we determine periods of typical 
performance and use them with regression algorithms in a measure-
correlate-predict fashion to simulate what the generation would have 
been during periods of atypical or unreported performance. From there, 
the actual versus predicted generation leads to the establishment of 
observation-informed loss factors (median = 17%) for small, single turbine 
installation distributed wind projects. 

KEYWORDS: distributed wind energy; small wind turbines; energy 
prediction; loss assumptions 

INTRODUCTION 

As is typical across all energy generation systems, accurate 
characterization of system losses is essential for setting generation 
expectations. For instance, it is long understood that turbine performance, 
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turbine unavailability, wind-reducing wakes from obstacles and other 
turbines, environmental impacts, curtailment, and other causes can lead 
to considerable energy loss in a wind project. Utility-scale wind energy 
researchers and industry players have used the wealth of turbine 
operations information available to quantify and categorize production 
loss. For example, Staffell and Green [1] determined that wind turbines in 
onshore utility-scale projects in the United Kingdom lose 1.6% of their 
generation output per year due to age-related performance decline. 
Ribeiro and Beckford [2] analyzed wind farms in Scandinavia and found 
that production loss due to icing could exceed 50% during winter months 
and 10% over the course of a year. El-Asha et al. [3] performed a diagnostic 
study of a wind farm in the United States and established typical wake 
losses of 2%–4% that could reach 60%–80% for some wind turbines in the 
farm during specific wind direction conditions. Wind farms analysts 
continue to use observation-based loss research to improve energy 
production expectations for existing and future projects. 

Distributed wind projects are connected at the distribution source of an 
electricity system or in off-grid applications. These projects, which can 
utilize one or more turbines with capacities ranging from less than 1-
kilowatt to multi-megawatt, serve onsite or local energy needs. In contrast 
with the utility-scale wind energy industry, the distributed wind 
community suffers from a dearth of publicly available information on 
project loss. For example, the National Laboratory of the Rockies’s (NLR) 
Cost of Wind Energy Review [4] and Distributed Wind Energy Futures 
Study [5] report estimates of the levelized cost of energy and technical 
potential, respectively, for distributed wind projects in the United States. 
Both reports incorporate a loss factor of 16.5% to represent energy loss due 
to blade soiling, turbine controls, and grid and turbine availability (Table 
1). The source of the 16.5% loss factor is attributed by Stehly et al. [4] as 
informed by NLR’s Competitiveness Improvement Project [6], which 
provides financial and technical support to manufacturers of small wind 
turbines, with no elaboration on the quantity or models of the turbines 
involved in the quantification, nor the temporal coverage, weather 
conditions, or loss categories involved. 

Contemporary tools that serve distributed wind customers present a 
range of loss categories and default loss factor values for converting gross 
wind energy estimates to net wind energy estimates (Table 1) but lack 
accompanying information to explain why the default values are selected. 
To support distributed wind energy customers, the Distributed Wind 
Energy Association (DWEA) developed the wind feasibility tool AgWind 
which utilizes a 10% turbulence factor to adjust gross energy estimates to 
net [7]. The NLR System Advisor Model (SAM) provides techno-economic 
analysis of a range of energy technologies, including utility-scale and 
distributed wind energy. For both utility-scale and distributed wind 
energy, SAM considers a comprehensive suite of loss categories, including 
wake, availability, electrical, turbine performance, environmental, and 
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curtailment losses, which sum to a total default loss assumption of 18% [8]. 
Global Wind Atlas is a widely used application created by the Technical 
University of Denmark (DTU) and the World Bank Group to assist 
policymakers, planners, and investors in identifying locations for wind 
power generation. Global Wind Atlas has a default loss assumption of 10% 
to cover wake and availability loss [9]. DTU is also the developer of 
MyWindTurbine, a tool for determining the feasibility of single-
installation small and midsize wind turbines [10] with a default loss 
assumption value of 7% [11] to cover technical loss but not wake loss [12]. 

Table 1. Loss factors utilized by energy evaluation reports and tools. Source: Listed for each product in the 
table. 

Wind Energy 
Evaluation Product 

Product 
Type 

Source Wind Energy 
Users 

Loss Categories Default 
Total Loss 
Factor 

Cost of Wind Energy 
Review 

Report Stehly et al., 2020 [4] Distributed Blade soiling, turbine 
controls, grid and 
turbine unavailability 

16.5% 

Distributed Wind 
Energy Futures Study 

Report McCabe et al., 2022 
[5] 

Distributed Follows Stehly et al., 
2020 [4] 

16.5% 

AgWind Tool DWEA, 2025 [7] Distributed Turbulence 10.0% 
Global Wind Atlas Tool DTU, 2025 [9] Utility-scale, 

distributed 
Wake, availability, and 
more according to 
user discretion 

10.0% 

MyWindTurbine Tool DTU, 2021 [10] Distributed Technical 7.0% 
System Advisor 
Model 

Tool NLR, 2025 [8] Utility-scale, 
distributed 

Wake, electrical, 
unavailability, 
performance, 
environmental, 
curtailment 

17.8% 

We hypothesize that loss assumptions for distributed wind tools will 
improve if operational observations from real world projects are 
accounted for. This work utilizes generation observations from distributed 
wind projects consisting of small wind turbines (nominal capacity ≤ 100 
kW) installed across the United States with the goal of establishing more 
accurate default loss factors for distributed wind energy estimation tools, 
in particular, NLR’s WindWatts [13]. The distributed wind projects fall into 
a typical design and ownership scenario observed in Pacific Northwest 
National Laboratory’s (PNNL) Distributed Wind Project Database [14]: 
small, locally owned, geographically scattered, single installation wind 
turbines. The Data and Methods Section shares the background on the 
distributed wind turbine observations, models and datasets, and 
methodology used to establish loss factors for distributed wind projects. 
Additionally, the Data and Methods Section includes a deep dive into the 
frequency of occurrence of different types of energy loss experienced by 
the turbines. Next, the Results and Discussion section establishes loss 
factors for small distributed wind projects and explores trends in loss 
according to geographic region and proximity to turbine service providers. 
Finally, the Conclusions section summarizes the findings and speaks to the 
impacts for distributed wind customers. 
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DATA AND METHODS 

The process to determine energy loss for distributed wind projects 
follows a measure-correlate-predict protocol, beginning with filtering 
each turbine dataset to exclude abnormal, underperforming, or missing 
time periods. The remaining “normal” data are subsequently trained with 
reference atmospheric model data using a machine learning technique to 
establish a relationship between the observed and simulated datasets. This 
relationship is then applied to the reference atmospheric model data 
during times when the turbine measurements are missing or did not pass 
the filtration protocol to predict what the turbine production should have 
been during periods of abnormal, underperforming, or offline events. The 
following sections provide deeper information on the wind turbine 
observations, the reference atmospheric model data, the filtration 
procedure, and the machine learning methodology. 

Wind Turbine Observations 

Wind project generation timeseries from distributed wind commercial 
entities are graciously shared with our team in a joint public-private effort 
to improve wind energy estimates. The wind generation data collection 
includes power output and nacelle wind speeds that have been corrected 
to estimate the free stream wind according to each commercial entity’s 
unique nacelle transfer function. The data from the turbines, which are 
shared with the authors under public-private partnership agreements to 
improve wind energy estimates in the WindWatts tool [13], support 
distributed wind loss evaluation for a typical distributed wind project 
design and ownership scenario involving a single small wind turbine. 

The small wind project dataset consists of operational data from 72 
projects using single-installation small wind turbines (capacities ≤ 100 kW). 
The small wind projects are owned by the specific customer receiving the 
energy produced or by local utilities and are installed across the 
continental United States, Hawaii, and Alaska. Our study collection focuses 
on small wind projects installed in the Midwest (33 projects), Southern 
Plains (9 projects), and Northeast (30 projects) regions of the United States 
due to the higher sample sizes found in these areas (Figure 1). The 
interconnection types of the projects are either behind-the-meter or via 
grid-connected microgrids, load-serving distribution lines, or remote net-
metering. Turbine hub heights for the projects are less than 50 m. 
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Figure 1. Map of United States regions and sample sizes of small distributed wind projects in this study. 
Source: Own research. 

The wind power generation datasets output at a 10-minute output 
frequency. We subsample the generation timeseries to keep only reports 
at the top of the hour to temporally align with the 1-hour resolutions of the 
reference atmospheric model datasets used during the correlate and 
predict phases of the loss analysis. Additionally, to align with the coverage 
periods of the atmospheric reference datasets, we limit our analysis to the 
years 2015 to 2023. The turbines were installed between 2008 and 2016, 
resulting in temporal duration ranges for this analysis of 2 to 8 years with 
a median of 8 years. 

Data Filtering 

The success of every measure-correlate-predict application depends on 
the quality of the observations gathered in the measure phase; therefore, 
we apply the following filtering procedure to establish high quality 
datasets for training in the correlate phase. To make the turbine 
observation filtration generalizable across multiple turbine models, which 
have unique status and performance reporting standards, the following 
process requires only the turbine power output, the nacelle wind speed, 
and the manufacturer’s power curve. We acknowledge that this approach 
has both advantages, including simplicity and application to multiple 
turbine models, and limitations, when considering the lack of service logs 
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and weather information beyond wind speed that could result in even 
higher quality datasets. 

We use density-based spatial clustering, specifically Matlab’s dbscan 
[15], to organize the observed wind turbine power curve (nacelle wind 
speed versus turbine power output) into normal and abnormal 
performance clusters (Figure 2). The normal performance clusters are 
used to build relationships with the atmospheric models. The abnormal 
performance clusters are used to establish loss by comparing the actual 
turbine power production with what should have been produced based on 
the relationship built during times of normal performance. 

For each small wind turbine, we iterate over 1-kW segments of 
observed turbine power data. For each 1-kW segment, we assess whether 
that segment falls along the steep portion of the power curve, when power 
increases significantly with wind speed, or the flatter top portion of the 
power curve near the turbine’s nominal capacity. If the segment being 
filtered occurs in the steep portion of the power curve, we apply an epsilon 
neighborhood search radius of 1 m s−1 that must contain at least 50% of 
the points within the segment. If the segment occurs at the top of the power 
curve, we use an epsilon neighborhood search radius of 10 m s−1 that must 
contain at least 90% of the points within the segment. 

The density-based clustering approach works to cleanly filter many of 
the turbines in the shared collections into normal and abnormal categories, 
excepting several small wind turbines that experienced significant 
curtailment. To ensure appropriate filtering, we add a threshold prior to 
the clustering based on the manufacturer’s power curve. In this approach, 
we adjust the manufacturer’s power curve by adding 10% to the wind 
speeds along the steep portion of the curve while retaining the same power 
values. For each instance in a turbine’s observed timeseries, we linearly 
interpolate the nacelle wind speed with the adjusted manufacturer's 
power curve to determine the associated power threshold. For the flat top 
of the power curve, the power threshold is set to the manufacturer’s power 
curve power minus 10% of the nominal capacity. If the observed turbine 
power meets or exceeds the threshold, the point moves onto the clustering 
phase. If the observed turbine power is less than the threshold, it is flagged 
as abnormal performance. The adjusted manufacturer’s power curve 
threshold approach is applied to all turbines in the small wind collection 
prior to the clustering evaluation. 

The review of applications and modelling techniques of wind turbine 
power curves for wind farms performed by Bilendo et al. [16] identifies 
five main categories of the most common power curve anomalies 
corresponding to abnormal performance: (1) lower stacked data (power at 
or near zero for wind speeds greater than cut-in and less than cut-out), (2) 
downrating or curtailment, (3) wind speed under-reading (persistence of 
higher than anticipated power generation for lower wind speeds), (4) 
dispersive (spread) data, and (5) icing/debris build-up on blades. Across 
the distributed wind observations in this analysis, all five categories can 
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be identified, with the first four represented in the example power curve 
in Figure 2. 

 

Figure 2. Example of the filtering process applied to an actual small distributed wind power curve used in 
this analysis. Power is normalized using the turbine’s nominal capacity. Source: Own research. 

Figure 3 shares the estimated frequency of occurrence per project of 
the five main categories of power curve anomalies identified by Bilendo et 
al. [16], along with the frequency of normal performance and missing 
power reports. It is important to note that Bilendo et al. [16] do not provide 
specific numeric guidelines for parsing power curve data into the five 
main categories; therefore, the values presented in Figure 3 are estimates 
based on the visual signatures of power curve anomalies and should be 
treated as such. In addition to the power curve anomalies, we also consider 
turbine unavailability when data is not being reported, which could result 
from planned or unplanned downtime or communication issues. As all the 
distributed wind projects in this study involve single turbine installations, 
wake impacts to energy production are not considered. 

Across the 72 projects, the observed generation data indicates normal 
operational performance for the majority of the analysis periods for small 
distributed wind projects, with a median frequency of normal operations 
of 73%. The good quality data are kept to supply the target data for the 
training phase to develop models for simulating energy generation during 
periods of anomalous performance or lack of reports. Unavailability is the 
next most frequent impact to performance data, affecting a median of 15% 
of the study periods for the small wind turbines. Of the power curve 
anomalies, occurrences of lower stacked data are noted during 4% of the 
small distributed wind timeseries, while dispersed data occur at a median 
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frequency of 1%. Considering the medians across the projects, downrating, 
wind speed under-rating, and icing/debris events occurred less than 1% of 
the study periods, though some small wind projects experience 
downrating up to 48% of their operational timeseries (Figure 3). 

 

Figure 3. Frequency of occurrence of power curve anomalies across 72 small distributed wind projects. For 
this and all box-and-whisker plots in the manuscript, the median value is indicated with the horizontal line 
within each box, the 25th and 75th percentiles form the box ranges, and the minimum and maximum values 
excluding outliers are displayed as the whiskers. Any outliers are indicated with + symbols. Source: Own 
research. 

Reference Datasets 

We explore two reference datasets for the correlate and predict phases 
of the loss factor determination study, beginning with the widely used 
European Centre for Medium-Range Weather Forecasts (ECMWF) 
Reanalysis version 5 (ERA5). ERA5 is a global reanalysis model [17] used in 
wind energy evaluations in a number of ways, including measure-
correlate-predict assessments, due to its tendency to have high correlation 
accuracy with wind observations [11,18,19]. ERA5 provides atmospheric, 
land surface, and oceanic reanalysis data from 1940 to the present time 
across the globe at a horizontal resolution of 0.25° after conversion from 
the native reduced Gaussian grid to a regular latitude-longitude grid 
(Table 2, [17]). For the correlate and predict phases of determining 
distributed wind turbine loss, we select the u and v components of the 
wind at 10 m and 100 m above the ground and the temperature T at 2 m 
above the ground from the ERA5 single level product [20] as reference 
variables. 

The second reference dataset we consider is less broadly validated, 
being more recently released, with higher horizontal and vertical spatial 
resolution. In a partnership with the National Oceanic and Atmospheric 
Administration (NOAA), NLR interpolated and bias-corrected the High-
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Resolution Rapid Refresh atmospheric model [21] with the WIND Toolkit 
(WTK) [22] to create the Bias-Corrected HRRR (BC-HRRR) [23], which is 
publicly available via NLR’s Wind Resource Database [24]. To develop BC-
HRRR, Buster at al. [23] interpolated the HRRR data at forecast hour 2 from 
the model’s original grid at 3-km resolution to the WTK grid (2-km 
resolution) using inverse distance-weighted interpolation. The NLR team 
next applied quantile mapping bias correction to the HRRR data during the 
years 2015 to 2023 using the WTK (temporal coverage = 2007 to 2013) as a 
historical baseline [23]. For the correlate and predict phases of 
determining distributed wind turbine loss, we convert the BC-HRRR wind 
speeds and wind directions at 10 m and every 20 m between 20 m and 100 
m above the ground to the u and v components of wind. Additionally, we 
select T at the same output heights as the wind components, along with 2 
m above the ground, to include in the reference set of variables (Table 2). 

For both ERA5 and BC-HRRR, we supplement the reference sets of 
variables with the hour of the day and the wind speed at each turbine’s 
hub height. In cases when the turbine hub height does not align with an 
output height for the wind variables in a dataset, we use the power law 
(Equation (2)) with a shear exponent calculated at each timestamp in the 
reference timeseries (Equation (1)) using the wind speeds Ulo and Uhi at the 
nearest output heights zlo and zhi surrounding the turbine hub height to 
determine the wind speed at this level (Uhub). 

𝛼 =  
ln(𝑈ℎ𝑖 𝑈𝑙𝑜⁄ )

ln(𝑧ℎ𝑖 𝑧𝑙𝑜⁄ )
 (1) 

𝑈ℎ𝑢𝑏  =  𝑈𝑙𝑜 (
𝑧

𝑧𝑙𝑜

)
𝛼

 (2) 

We use the nearest neighbor grid point to each turbine location to 
develop the reference datasets from ERA5 and BC-HRRR for the correlate 
and predict phases. 

Table 2. Characteristics of reference datasets used in the measure-correlate-predict approach for 
distributed wind turbine loss determination. Source: Hersbach et al. [17]; Buster et al. [23]. 

Reference Dataset ERA5 (Single Level Product) BC-HRRR 
Developers ECMWF [17] NLR and NOAA [23] 
Temporal coverage 1940—present 2015—2023 
Temporal resolution 1-hour 1-hour 
Horizontal coverage Global Continental United States 
Horizontal resolution 0.25° after conversion from the native 

reduced Gaussian grid to a regular 
latitude-longitude grid 

2-km 

Variables and heights used for 
measure-correlate-predict 

u and v at 10, 100 m 
T at 2 m 
U at hub height 
Hour of day 

u and v at 10, 20, 40, 60, 80, 100 m 
T at 2, 10, 20, 40, 60, 80, 100 m 
U at hub height 
Hour of day 

Training and Validation 

Once the wind power observations are filtered according to the method 
outlined in the Data Filtering section, we establish a training dataset of 
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timestamps, observed generation, and reference variables from ERA5 and 
BC-HRRR (Table 2) for each distributed wind turbine that satisfies the 
following criteria: 
1) Occurs between 2015 and 2023 (the limiting temporal coverage of the 

shorter-duration reference dataset, BC-HRRR) 
2) Wind generation data, ERA5, and BC-HRRR are all available at a given 

timestamp 
3) Wind generation data falls into the normal (kept) category after 

filtration 
We next develop trained regression models with ERA5 and BC-HRRR 

individually supplying the predictors for the wind generation 
observations that meet the expected performance criteria as the target. 
Two regression models are explored for their potential to develop 
representative timeseries of observed wind generation: (1) regression 
trees using Matlab’s fitrensemble [25] with 100 trees and (2) neural 
networks using Matlab’s fitrnet [26]. To test the accuracy of the 
combinations of these approaches and atmospheric models prior to 
extending any of them to simulate periods of atypical or missing 
generation, we withhold a randomly selected 25% of the data points from 
each distributed wind project’s observational timeseries as the test 
datasets. We designate the remaining 75% of the timeseries from each 
project as training datasets to predict the withheld test datasets for each 
project. To develop a robust sample of the performance of each 
combination of regression algorithm and atmospheric reference dataset, 
we run 30 trials of this exercise of withholding and predicting a randomly 
selected 25% of the filtered data for each distributed wind project. 

Based on the results of the trials shown in Figure 4, we establish that 
neural networks in combination with BC-HRRR provides the optimal 
combination for predicting distributed wind generation during the 
redacted periods. When taking the median across the 30 trials for each site, 
using regression trees with ERA5 and BC-HRRR and neural networks with 
BC-HRRR result in the most accurate median actual versus predicted 
generation across the sites at 99.9% for all combinations, while neural 
networks in combination with BC-HRRR produces the smallest range of 
actual versus predicted generation (99.3–100.3%) (Figure 4a). Considering 
an additional error metric, the Pearson correlation coefficient is also the 
highest when comparing the redacted actual generation with the 
simulations produced using neural networks with BC-HRRR (0.75–0.90 
across the 72 sites with a median of 0.86) (Figure 4b). 
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Figure 4. Median per project (a,b) and full suite (c,d) of actual versus predicted generation (a,c) and Pearson 
correlation coefficients (b,d) between actual and predicted generation across 30 trial simulations for each 
of the 72 distributed wind projects using different combinations of regression-based training algorithms 
and atmospheric reference datasets. Source: Own research. 

Interestingly, neural networks in combination with ERA5 issue the 
worst performance (median actual vs. predicted generation = 99.1% and 
range = 96.2–100.1%) despite this algorithm working more successfully 
with BC-HRRR (Figure 4a). We found in our trials that neural networks in 
combination with ERA5 exhibited challenges with learning, particularly 
characterized by the models being pushed toward incorrect boundaries, 
which we did not see for the other three combinations of algorithms and 
reference datasets. ERA5 is known for being well correlated with wind 
observations [27] but also has an established low wind speed bias [28]. We 
speculate that the low ERA5 wind speed bias contributes to the challenges 
experienced by the neural networks when trying to develop relationships 
with wind generation data. Based on our trials with the filtered datasets, 
we proceed using neural networks with BC-HRRR to build models based 
on the filtered datasets (again, 30 for each distributed wind project) and 
use them to simulate periods of atypical or unavailable turbine data. 

In Figure 4c,d we include the actual versus predicted generation and 
correlation, respectively, across all projects and all trials to gauge the 
potential uncertainty for the loss determination methodology for each 
combination of algorithm and reference dataset if a wind analyst were to 
perform a single trial. Given 30 trials for each of 72 distributed wind 
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projects, the sample size for the uncertainty calculation for each 
combination of algorithm and reference dataset is 2160. Across the 
samples, confidence is high that regression trees with ERA5 or BC-HRRR or 
neural networks with BC-HRRR can accurately recreate the total actual 
generation, with 25th and 75th percentile actual versus predicted 
generation ranging from 99.3% to 100.4% (Figure 4c). Including the 
outliers, our selection of neural networks with BC-HRRR yields the 
smallest range of actual versus predicted generation (94.8% to 104.5%) 
(Figure 4c). In terms of correlation between the actual and predicted 
timeseries across the samples, the 25th and 75th percentiles are similar for 
all four combinations of algorithm and reference dataset (0.82 and 0.87 for 
regression trees with ERA5, 0.78 and 0.86 for neural networks with ERA5, 
0.80 and 0.85 for regression trees with BC-HRRR, and 0.84 and 0.87 for 
neural networks with BC-HRRR) (Figure 4d). Including the outliers, neural 
networks with BC-HRRR produces the smallest range of correlation 
possibilities and those closest to one (0.73 and 0.91) (Figure 4d). 

Loss Factor Determination Methodology 

The methodology for establishing distributed wind loss factors follows 
a similar protocol to the testing and validation for the expected generation 
observations discussed in the prior section. We develop 30 trained neural 
network models for each distributed wind project with BC-HRRR 
providing the predictors and the entire filtered generation timeseries 
exhibiting typical behavior as the response. The resultant neural network 
models are then applied to the atypical and unavailable events, with BC-
HRRR as the predictor. The full estimated generation timeseries for each 
project is then reconstructed by combining the filtered generation 
timeseries exhibiting typical performance with the median of the 30 
generation estimates during periods of atypical behavior or unavailable 
data. For each calendar year in each turbine’s generation timeseries, the 
loss factor is calculated according to Equation (3): 

𝐿𝑜𝑠𝑠 𝐹𝑎𝑐𝑡𝑜𝑟 = 100 ∗ (1 −  
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦
) (3) 

Since this analysis aims to provide typical observation-based loss 
factors that can be applied to distributed wind energy estimation tools and 
technical assistance evaluations, we exclude cases of extreme outages 
when calculating the loss factors. We define extreme outages as calendar 
years with no generation reports and the surrounding calendar years on 
both sides of the outage year. This approach leads to the exclusion of 39 
analysis years across 11 small wind projects for the loss factor calculations. 
Each of the small wind projects that are impacted by data removal 
contains valid years that are included in the loss factor analysis. Unless 
otherwise specified, deep dive analyses that focus solely on turbine 
unavailability include all study years, including those with extreme 
outages, to establish trends according to turbine age and year of operation. 
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RESULTS AND DISCUSSION 

Loss Factors for Small Distributed Wind Projects 

The medians of the annual loss factors for the 72 small distributed wind 
projects are highly variable, ranging from 2–66% (median across all 
projects = 17%) (Figure 5), corresponding with the wide degree of 
unavailability seen across the projects (Figure 3). The interannual 
variability in each small wind project’s loss can also be significant 
depending on the degree of unavailable data, with annual loss factors 
spanning 91 percentage points for one project in the Northeast with loss 
factors ranging from 5% to 96% over an 8-year analysis period. In fact, the 
median per project range of annual loss factors is 44 percentage points, 
highlighting challenges in turbine downtime and reporting reliability for 
small wind projects. In the context of wind energy estimation tools, which 
sometimes account for the impacts of interannual variability in the wind 
resource, the quantification of the interannual variability of energy loss 
for small wind turbines points to an important estimation gap. 

This investigation highlights several similarities and differences when 
comparing loss for single-installation small distributed wind turbines 
versus large, utility-scale wind farms. Excluding wake loss in multiple 
turbine environments, which Lee and Fields [29] identify as the largest 
contributor to utility-scale wind farm loss, turbine unavailability is the 
most significant loss category in terms of frequency of occurrence and 
contribution to total loss for both small distributed wind turbines and 
utility-scale wind farms. In terms of total loss, however, the differences 
between the two types of wind energy project are substantial. The review 
of Lee and Fields [29] reports total losses for utility-scale wind farms 
ranging from 10% to 23%, while this study yields a significantly broader 
range of total losses for single installation small distributed wind turbines, 
2% to 66%. 

 

Figure 5. Annual loss factors per distributed wind project. Median loss factors are highlighted with thick 
black lines. Source: Own research. 
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A wind turbine’s location can impact the degree of energy loss, and 
therefore the annual energy production of a project. From a regional 
perspective, trends in project loss can be influenced by the local 
environment, including frequency and severity of weather events, terrain, 
and proximity to wildlife populations. Separating the loss category 
analysis of Figure 3 by region, small distributed wind projects located in 
the Northeast have the greatest percentage (median = 85%) of reported 
and normal power curve behavior, followed by projects in the Midwest 
(76%) and Southern Plains (70%) (Figure 6a). Challenges related to turbine 
unavailability are most frequent in the Midwest, with a median of 12% of 
generation data in these regions being unreported during the years 
considered for developing loss factors. When considering the power curve 
anomalies, projects in the Southern Plains are the most impacted across 
the categories, with the sole exception of icing/debris, which only one 
project in the Midwest accounted for. Projects in the Southern Plains 
experience lower stacked anomalies around 5% of their analyzed time, 
compared with 2% for Midwest and Northeast projects. According to the 
literature review performed by Bilendo et al. [16], lower stacked events 
are typically caused by damage to power measuring instrumentation or 
communication equipment faults. Projects in the Southern Plains are the 
only ones to have notable frequencies of turbine derating (1%). The 
median frequencies of occurrence of wind speed under-rating are less 
than 1% across all three regions. Dispersed data accounts for 2% of the 
analyzed timeseries for projects in the Southern Plains, compared with 1% 
for those located in the Midwest and Northeast. 

Driven mainly by turbine unavailability and a combination of 
unavailability and power curve anomalies, respectively, customers in the 
Midwest and Southern Plains are able to reasonably expect project loss 
factors of 19% and 18% compared to what their project would have 
documented under ideal reporting and operating conditions. Customers in 
the Northeast can expect slightly smaller loss factors around 16% (Figure 
6b). 

 

Figure 6. (a) Median annual power curve anomaly frequency according to region of small wind project. (b) 
Median annual project loss factors for small distributed wind projects according to region. Source: Own 
research. 
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Potential Impacts on Small Wind Project Loss 

A challenge for small, locally owned, and geographically scattered 
distributed wind projects is access to wind turbine service providers, of 
which relatively few are active in the United States. The amount of time a 
broken or underperforming turbine is offline or not generating as 
expected is correlated to the time it takes for a service provider to access 
the turbine. Additionally, some service providers have distance ranges 
that they operate within, making it challenging for turbine owners to 
identify and access maintenance for their area. NLR maintains a list of 
distributed wind installers [30] to support current and future customers of 
distributed wind. Many of these installers also provide scheduled and 
unscheduled maintenance and end-of-life decommissioning for a variety 
of wind turbine models and sometimes other energy technologies, like 
solar and battery storage. 

For the small wind projects, we establish the minimum distance 
between each distributed wind project in our analysis collection and the 
nearest service provider from NLR’s distributed wind installers list. The 
resultant distances between distributed wind projects and the nearest 
service provider range from 5 to 1032 km with a median of 223 km. We 
examine the range of annual loss factors for each distributed wind project, 
recalling from Figure 5 that the annual variability is quite large, according 
to distance to the nearest service provider (Figure 7) to test the hypothesis 
that proximity to turbine service is an important factor in project 
performance consistency. The sample of turbines in each distance bin in 
Figure 7 is roughly comparable, ranging from 11 to 17 turbines. While the 
median and maximum ranges of annual loss factors are noted to be 
smallest when the nearest service provider is within 200 km of the turbine, 
it is difficult to establish a confident relationship when no linear trend 
between annual loss factor range and service provider proximity is 
present (Figure 7). 
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Figure 7. Range of annual loss factors for distributed wind projects according to distance from nearest 
service provider. For each project, the range of annual loss factor is the difference between the highest and 
lowest annual loss factor. Source: Own research. 

To explore a similar investigation to Staffell and Green [1], who 
determined that wind turbines in onshore utility-scale projects in the 
United Kingdom lose 16% of their generation output per decade due to age-
related performance decline, on a small wind project scale, we examine 
trends in project loss according to turbine age in Figure 8. Since Staffell 
and Green [1] speculated that the age-related decline in utility-scale 
generation is due to unavailability and wear and this study identifies 
turbine unavailability as the biggest contributor to small distributed wind 
project loss (Figure 3), we focus on turbine unavailability during the first 
decade of a small wind turbine’s life cycle. This look back in time requires 
us to expand our analysis to include years outside the range covered by 
BC-HRRR and years of extreme outages to maintain a consistent year-to-
year analysis. Of the 72 small wind turbines in the collection, roughly half 
(33) have consistent reporting for each year of their first decade online. 

Contrary to the evaluation of Staffell and Green [1], we find no trend in 
small wind turbine unavailability related to turbine age during the first 
decade that the projects were online (Figure 8). In fact, the age at which 
the greatest number of turbines (8 of the 33 projects) experiences their 
smallest percentage of unavailability is 10 years. The age at which the 
greatest number of turbines (again, 8 of the 33 projects) experiences their 
largest percentage of unavailability is 8 years. 

 

Figure 8. Unavailability according to turbine age for a subset of 33 small wind projects. Source: Own 
research. 

Without further documentation, it is difficult to attribute the variations 
in distributed wind project loss to specific events, characteristics, or trends. 
For example, Figure 9 explores turbine unavailability for a consistent 
subset of projects (27 in the Midwest, 8 in the Southern Plains, and 24 in 
the Northeast), much like the analysis in Figure 8 but for year of turbine 
generation. We note a significant increase in unavailability for turbines in 
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the Northeast during the year 2021 (median frequency = 23%) which is 
tempting to attribute to a number of extreme weather events that occurred, 
including Winter Storm Orlena [31] and Hurricane Ida [32]. However, 
without service records or media reports, the latter of which are 
commonly available for incidents at large utility-scale wind farms, it is not 
possible to localize the impacts of the storms to the small distributed wind 
projects in our study collection. The observations utilized in this work 
provide immense value for quantifying small wind project loss factors and 
their year-to-year uncertainty, along with the frequency of occurrence 
different power curve anomalies. However, small wind energy 
observations tend to lack the documentation to support a full explanation 
as to why such interannual variations and anomalies are occurring, urging 
further public-private partnerships, expanded reporting guidance, and a 
deeper understanding of the roles and responsibilities for small, customer-
owned wind projects when it comes to performance-based monitoring and 
response. 

 

Figure 9. Turbine unavailability per region and year for 59 small wind projects in the United States. Source: 
Own research. 

CONCLUSIONS 

To further underscore the necessity of accurately characterizing loss in 
distributed wind energy estimates, we perform a brief complementary 
economic analysis using the WINDVALT tool. WINDVALT is a publicly 
accessible webtool developed by PNNL to quickly compare costs and 
benefits of distributed wind systems based on user inputs [33]. In this 
example, a representative behind-the-meter wind turbine with a 40-m hub 
height sited at a windy location in Iowa is selected as an economic case 
study using NLR’s 100-kW reference power curve [34]. Using the above 
wind project characteristics with identical financial inputs, we vary the 
total loss assumption within WINDVALT between 7% and 18%, 
representing the lower and upper default loss assumptions found in 
distributed wind reports and tools (Table 1). The results of the case study 
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indicate that changes in turbine loss can substantially influence project 
economics. Varying the WINDVALT total loss assumption from 7% to 18% 
for our hypothetical turbine in Iowa leads to an approximately 60% 
reduction in the estimated net present value of the project, demonstrating 
the sensitivity of small distributed wind economics to assumed loss factors. 

Given the importance of accurately representing loss in distributed 
wind energy estimates for projects using small wind turbines, we establish 
observation-informed loss factors for converting gross energy estimates to 
net energy estimates for wind resource assessment tools and technical 
assistance. This research fills an important gap for wind energy estimation, 
as the typical characteristics of a small distributed wind project (shorter 
hub heights, smaller rotor diameters, and few turbines) contrast 
substantially with those of utility-scale wind farms, for which much 
literature on losses has been published. Our analysis points to a median 
loss factor of 17% as a recommended means of adjusting gross energy 
estimates, confirming the loss guidance of two critical distributed wind 
reports, Stehly et al. [4] and McCabe et al. [5] at 16.5%, along with the SAM 
energy evaluation tool at 17.8%. For small wind projects in the Midwest, 
Southern Plains, and Northeast regions of the United States, the loss factor 
can be customized to 19%, 18%, and 16%, respectively. 

While the median loss factors determined in this work are helpful for 
distributed wind energy tools and technical assistance in setting 
observation-based energy expectations, customers should also be 
informed of the vast variability of the year-to-year loss factors that the 
projects in this study experienced (Figure 5). Just as interannual wind 
speed variability impacts wind energy production [35], variability in 
turbine loss must also be anticipated. We identify turbine unavailability 
as the greatest contributor to small wind project loss, which urges further 
research into improved monitoring and response efforts for small wind 
turbines. 

Small distributed wind turbines are diverse in design and monitoring 
capabilities. The data filtration methodology used in this work depends on 
the presence of onsite wind speed measurements from nacelle 
anemometers. However, many small wind turbines installed in the United 
States and worldwide lack onsite wind speed observations. Therefore, our 
future work involves developing new loss filtering and categorization 
frameworks for small wind turbines based solely on energy generation 
and turbine status information in order to expand loss factor 
representation to additional turbine models. 

DATA AVAILABILITY 

The turbine generation observations used in this work were shared 
with PNNL and NLR under public-private partnership agreements to 
improve energy estimates in distributed wind tools and are therefore not 
available for sharing. The atmospheric reference datasets BC-HRRR [24] 
and ERA5 [20] are publicly available. 
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