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ABSTRACT 

Modeling the axial load-bearing capacity of short concrete columns 
confined with fiber-reinforced polymer (FRP) sheets necessitates 
consideration of several key factors, such as material properties, 
geometric dimensions, and the confinement effects provided by the FRP 
wrapping. These considerations are vital for the design of more durable 
and sustainable FRP-confined concrete structures. This research presents 
a comparative evaluation of eight machine learning (ML) classification 
algorithms and one symbolic regression method aimed at predicting the 
enhancement in axial compressive strength (Fco/Fcc) of FRP-wrapped 
short concrete columns with different cross-sectional shapes. The study 
accounts for variables including size effect (b/bo), aspect ratio (d/b), corner 
rounding (r/b), wrapping stress (2·t·Ffrp / b·Fco), and wrapping stiffness 
(2·t·Efrp / ν·b·Ec). A thorough literature review yielded a dataset of 500 
experimental results on FRP-confined concrete columns with a variety of 
concrete strengths, cross-sectional shapes (square and circular), FRP types, 
and wrap thicknesses. This dataset was divided into a training set of 400 
samples (around 80%) and a validation set of 100 samples (approximately 
20%). Results showed that the response surface methodology (RSM), 
gradient boosting (GB), CN2, support vector machine (SVM), k-nearest 
neighbor (KNN), and Tree models achieved excellent prediction accuracies 
exceeding 90%, while the RF model delivered very good performance with 
about 88% accuracy. In contrast, the naive bayes (NB) and stochastic 
gradient descent (SGD) models underperformed, reaching accuracies 
below 70%. Analysis using correlation matrices and sensitivity evaluations 
revealed that confining stress and stiffness were the most significant 
predictors, followed by corner radius, aspect ratio, and size effect. Notably, 
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the RSM approach was unique in providing a closed-form equation, 
making it suitable for direct application in design practice. 

KEYWORDS: concrete strength; fiber wrapped columns; fiber reinforced 
polymer (frp); advanced machine learning 

ABBREVIATIONS 

SSE, sum of squared error; MAE, mean absolute error; MSE, mean squared 
error; RMSE, root mean squared error; R2, coefficient of determination; 
GB, Gradient Boosting; CN2, CN2 Rule Induction; NB, Naive Bayes; SVM, 
Support vector machine; SGD, Stochastic Gradient Descent; KNN, K-
Nearest Neighbors; Tree, Tree Decision; RF, Random Forest; 3D, three 
dimension; CFRP, carbon fiber reinforced polymerc 

INTRODUCTION 

Because of its outstanding mechanical properties, the use of fiber 
reinforced polymer (FRP) composites instead of traditional materials has 
greatly aided in the retrofitting or strengthening of various concrete 
elements [1]. FRP materials are extremely robust and corrosion-resistant, 
making them ideal for use in hostile situations where traditional 
reinforcing materials may decay over time [2]. Furthermore, FRP 
materials are frequently derived from recycled resources and are easily 
recyclable, making FRP reinforcement a long-term alternative for 
increasing the performance of reinforced concrete (RC) components [3–6]. 
FRP confinement is a particularly cost-effective approach for increasing 
the performance of existing RC elements since it eliminates the need for 
additional reinforcing materials and can lower the thickness of the 
concrete required.FRP confinement has been found to improve the 
performance of reinforced concrete (RC) columns, increasing their 
strength and ductility. This can improve safety and lessen collapse hazards 
during earthquakes and natural calamities [6]. The circular design of FRP 
sheets improves the concrete core's confinement efficiency, whereas 
rectangular parts have lesser homogeneity. The use of FRP sheets is 
determined by their properties, concrete, applied load, and cross-section 
geometry, which includes the rectangularity aspect ratio (t/b), corner 
radius (rc), and specimen size [7]. The motivation for researching FRP-
confined rectangular RC columns stems from its ability to accommodate a 
wide range of column sizes and shapes [8]. However, predicting the 
maximum axial load of FRP-confined rectangular RC columns is difficult 
due to their complex and nonlinear behavior, the varying properties of 
FRP materials, the complex interaction between FRP confinement and the 
concrete matrix, and a lack of experimental data. Despite these challenges, 
ongoing research strives to increase our understanding of FRP-confined 
rectangular RC columns and create more precise models for forecasting 
their maximum axial load [1]. This will lead to developments in the field, 
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as well as improvements in structural design and construction. Intensive 
efforts have been undertaken to develop a model capable of predicting the 
compressive strength of restricted rectangular columns [9]. These 
attempts employed either mathematics (design-oriented) or machine 
learning models. Given the given experimental data, design-oriented 
models anticipate the behavior of FRP-confined rectangular RC columns 
using empirical equations and simplified assumptions. Berradia et al. [10] 
improved empirical models for the axial loading capacity (ALC) of circular 
normal strength concrete (NSC) columns wrapped in carbon fiber 
reinforced polymer (CFRP) sheets with interior transverse steel 
reinforcement (TSR) (CSC columns) by incorporating the interaction 
mechanism between TSR and FRP confining behavior. The study used a 
standard regression analysis technique and artificial neural networks 
(NNs) to examine the experimental results of 76 CSC columns from prior 
studies. The proposed NN model was optimized for different hidden layers 
and neurons. The results were in close agreement with the testing 
database, with a higher accuracy than the theoretical model. The 
comparative study confirmed the superiority and accuracy of the 
predicted strength models for CSC columns. Ma et al. [11] used Carbon 
fiber reinforced polymer (CFRP) to support concrete-filled steel tubular 
columns, but it's complicated interactions make strength predictions 
problematic. To forecast the axial compressive capacity of CFRP-confined 
CFST short columns, a new method called XGBoost is developed, which 
uses an advanced machine learning algorithm. The data collection 
contains 379 records that examine failure modes, stress processes, and the 
impacts of CFRP layers, core concrete strength, and section shapes on axial 
compressive capacity. Calculations are performed using eight methods, 
including linear regression, K-nearest neighbor, support vector machine, 
and ensemble learning models. XGBoost has the best prediction 
performance, with an R2 of 0.9719. Also, Onyelowe et al. [5] investigated 
the effects of fiber-reinforced polymers on the restricted compressive 
strength of wrapped concrete columns. According to the data, the Fcc 
value is determined by elements such as FRP thickness, tensile strength, 
elastic modulus, column diameter, and concrete's confined compressive 
strength. Five AI approaches were used: genetic programming, artificial 
neural networks, and evolutionary polynomial regression. The results 
showed that confinement stress and Ftf have a substantial influence on 
the Fcc value. The ANN model proved to be more accurate than the EPR 
and GP predictive models. Other studies, Prakash and Nguyen [12] 
investigated machine learning methods for predicting the maximum load 
capacity (MLC) of circular reinforced concrete columns made of Fiber 
Reinforced Polymer (FRP). The Extreme Gradient Boosting (XGB) 
algorithm is integrated with unique metaheuristic algorithms to ensure 
resilience and generalizability over 200 Monte Carlo runs. The model is 
compared to eight different ML models and assessed for interpretability 
using SHAP values. The study also created an interactive GUI to improve 
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understanding and application of the XGB model. Xue et al. [13] used 
materials and machine learning to predict the lateral confinement 
coefficient (Ks) of reinforced concrete columns. The Ks values were 
predicted using machine learning models such as genetic programming 
(GP), minimax probability machine regression (MPMR), and deep neural 
networks. GP and MPMR both performed well, but the GP model 
outperformed with more precision and fewer errors. The GP model earned 
more points and finished first. Nematzadeh et al. [14] investigated the 
eccentric compressive behavior of steel fiber-reinforced concrete columns 
strengthened with carbon fiber-reinforced polymers (CFRPs). Eighteen RC 
columns with plain concrete and fiber-reinforced concrete were subjected 
to eccentric compressive loading. The results showed that CFRP sheets 
improved loading capacity and ductility, but steel fibers in the concrete 
increased ductility. The applied load's eccentricity reduced the influence 
of CFRP sheet confinement on reinforced concrete strength. An analytical 
model was created to predict the behavior of fibrous concrete columns 
restricted with transverse reinforcement and CFRP sheets under eccentric 
compressive loads. Baili et al. [15] looked at the structural performance of 
glass fiber-reinforced polymer (glass-FRP) reinforced concrete (RC) 
columns versus steel rebar RC columns using steel hybrid fibers. The 
researchers discovered that GFC columns had lower axial strengths and 
greater ductility indices than SFC columns. The study created a new 
artificial neural network model and offered a theoretical equation for 
calculating GFC columns' AS. The results revealed an average discrepancy 
of 3.2 and 1.9% from the test results. Ilyas et al. [16] described a new GEP 
model for forecasting the compressive strength of circular CFRP-confined 
concrete columns. The model, which is based on a large database of 828 
data points, has been reviewed and validated using multiple methods. 
Compared to other AI algorithms, GEP has a simpler mathematical 
relationship and is more reliable. The model outperforms linear and 
nonlinear regression models in terms of precision, efficiency, and 
proximity to the target. It also meets external validation standards better 
than other traditional models. Sayed et al. [7] reviewed machine-learning 
techniques for estimating axial compressive load of FRP-confined concrete 
columns. It discusses influential parameters and their effects on strength, 
ductility, and failure mode. Data from steel reinforced rectangular 
concrete columns and externally confined with different FRP composites 
were used to generate machine-learning models. The models were found 
to be in good agreement with test results, with gradient boosting and 
random forest repressors being more accurate. 

Research Significance 

The significance of this research lies in its contribution to advancing 
the predictive modeling of FRP-confined concrete columns, addressing the 
challenges posed by their complex nonlinear behavior, varying material 
properties, and diverse cross-sectional geometries. By leveraging machine 
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learning approaches, including ensemble and regression-based models, 
this study provides highly accurate tools for estimating axial compressive 
strength, which enhances the reliability and efficiency of structural design 
and retrofitting strategies. Furthermore, the research integrates extensive 
experimental data with AI-driven modeling, offering practical predictive 
frameworks that reduce reliance on purely empirical or theoretical 
equations, improve interpretability, and support informed decision-
making for the design and optimization of durable and resilient FRP-
confined reinforced concrete structures. 

Research Gap and Statement of Novelty 

Despite considerable progress in modeling FRP-confined concrete 
columns, existing studies often focus on specific column shapes, limited 
datasets, or traditional empirical and analytical models that may not fully 
capture the complex, nonlinear interactions between FRP materials, 
concrete properties, and geometric parameters. Additionally, while 
machine learning approaches have been applied, there remains a lack of 
comprehensive comparative analyses of multiple AI and ensemble models 
for both circular and rectangular columns, as well as limited integration 
of sensitivity analysis to identify the most influential factors governing 
axial compressive strength. The novelty of this research lies in its 
development of a data-driven framework that combines a diverse 
experimental dataset with multiple machine learning techniques, 
including ensemble and regression-based models, to accurately predict the 
axial compressive strength of FRP-confined short concrete columns. This 
study not only demonstrates high predictive accuracy but also 
incorporates sensitivity analyses and closed-form modeling via RSM, 
providing both practical design tools and deeper insights into the relative 
influence of key structural and material parameters, thereby bridging the 
gap between experimental findings, AI modeling, and structural design 
applications. 

METHODOLOGY 

Collected Database and Basic Analysis 

An extensive literature search [4,5] produced 500 records which were 
collected from literature for compressive strength for short concrete 
columns with different concrete strengths, cross section shapes (square 
and circular), and wrapped with different FRP types, thickness. Each 
record contains the following data:b/bo: Size effect = Column width (or 
diameter) / (bo=150mm), r/b: Radius of corner round / column width (=0.5 
for circular columns), d/b: Aspect ratio = Column length / column width (= 
1.0 for square and circular columns), Stiff: Relative stiffness of wrapping 
FRP sheets (=2.t.Efpr/.b.Ec), Conf: Relative confining stress of wrapping 
sheets (=2.t.Ffrp/b.Fco), Fcc/Fco: Enhancement of axial capacity due to 
wrapping (wrapped concrete strength/unwrapped concrete strength). 
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Where t is Thickness of wrapped FRP, Ffrp is Tensile strength of FRP, Efrp 
is Elastic modulus of FRP, Ec  is Elastic modulus of concrete, and  is 
Poisson ratio of concrete. The preprocessing of the collected dataset 
involved a careful review of all 500 records to identify and remove 
redundant or duplicate entries, ensuring that each data point represented 
a unique combination of column characteristics and FRP confinement 
properties. In addition, the dataset underwent shuffling to randomize the 
order of samples, which prevents any unintended sequential patterns 
from influencing the training process. These preprocessing steps were 
implemented to enhance the quality and performance of the machine 
learning models by providing a cleaner, more representative, and 
unbiased dataset for both the training and validation phases. The collected 
records were divided into training set (400 records80%) and validation 
set (100 records 20%) [17]. The appendix includes the complete dataset, 
while Table 1 summarizes their statistical characteristics. Finally, Figure 1 
shows Pearson correlation matrix, histograms, and the relations between 
variables. It can be observed from this figure that Stiff: Relative stiffness 
of wrapping FRP sheets (=2.t.Efpr/.b.Ec) and Conf: Relative confining 
stress of wrapping sheets (=2.t.Ffrp/b.Fco) are the variables in the 
preliminary analysis that show strong internal consistencies of above 0.5.  

Table1. Statistical analysis of collected database.  

 b/bo d/b r/b Stiff Conf Fcc/Fco 
Training set 

Max. 2.67 2.00 0.50 1.09 1.99 4.50 
Min 0.60 1.00 0.00 0.02 0.05 0.25 
Avg 1.20 1.09 0.29 0.17 0.41 1.66 
SD 0.43 0.26 0.16 0.14 0.33 0.64 
Var 0.35 0.24 0.56 0.83 0.81 0.39 

Validation set 
Max. 2.33 2.00 0.50 0.76 1.66 4.50 
Min 0.63 1.00 0.03 0.03 0.05 0.50 
Avg 1.19 1.10 0.29 0.17 0.42 1.62 
SD 0.37 0.27 0.16 0.13 0.33 0.66 
Var 0.31 0.24 0.58 0.75 0.79 0.41 
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Figure 1. Correlation, Distribution and Interpreting chart.  

Research Program 

Eight different ML classification techniques and one symbolic model 
were used to predict the axial capacity of short concrete columns of different shapes 

wrapped with FRP sheets using the collected database. These techniques are 
“Gradient Boosting (GB)”, “CN2 Rule Induction (CN2)”, “Naive Bayes (NB)”, 
“Support vector machine (SVM), “Stochastic Gradient Descent (SGD)”, “K-
Nearest Neighbors (KNN)”, “Tree Decision (Tree)” and “Random Forest 
(RF)”. The developed models were used to predict (Fco/Fcc) considering 
size effect, aspect ratio, corner rounding, wrapping stress and stiffness. All 
the developed models were created using “Orange Data Mining” software 
version 3.36 [18–20]. The considered data flow diagram is shown in Figure 
2. The following section discusses the results of each model. The 
Accuracies of developed models were evaluated by comparing sum of 
squared error (SSE), mean absolute error (MAE), mean squared error 
(MSE), root mean squared error (RMSE), Error %, Accuracy % and 
coefficient of determination (R2) between predicted and calculated axial 

capacity of short concrete columns of different shapes wrapped with FRP 

sheetsparameters values. The definition of each used measurement is 
presented in Equations (1)–(6). 
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𝑁
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 (2) 

𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 (3) 

𝐸𝑟𝑟𝑜𝑟 % =
𝑅𝑀𝑆𝐸

𝑦̂
 (4) 

𝐴𝑐𝑐𝑢𝑟𝑐𝑦 % = 1 − 𝐸𝑟𝑟𝑜𝑟 % (5) 

𝑅2 = 1 −
∑(𝑦𝑖 − 𝑦̂)2

∑(𝑦𝑖 − 𝑦̅)2
 (6) 

 

 

Figure 2. The considered data flow in Orange software.  
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Theory of Advanced Machine Learning Methods 

Gradient boosting (GB) 

Gradient Boosting (GB) is a powerful machine learning technique used 
for both regression and classification tasks. It works by building an 
ensemble of weak learners, typically decision trees, in a sequential 
manner. Each tree corrects the errors of the previous one by focusing on 
the residuals, creating a model that minimizes the overall error. Gradient 
Boosting variants exist such as Optimized version of GB with faster 
computation and additional features like handling missing data, LightGBM, 
focused on efficiency with large datasets and high-dimensional data and 
CatBoost, specializes in categorical features without requiring 
preprocessing. Gradient Boosting is a versatile and highly effective 
technique for predictive modeling. Its application in industries like 
construction, healthcare, and finance highlights its broad utility. When 
paired with domain knowledge and robust datasets, Gradient Boosting 
enables innovation, efficiency, and sustainability across various fields. 
The hyperparameters of the Gradient Boosting (GB) model play a central 
role in determining how effectively it captures the nonlinear relationships 
governing the axial load enhancement of FRP-confined concrete columns. 
In this context, where confinement stiffness, confining stress, geometric 
effects, and cross-sectional characteristics interact in complex ways, the 
tuning and behavior of key GB hyperparameters largely explain its high 
predictive accuracy. The learning rate controls the incremental 
contribution of each boosting stage. A moderate to low learning rate 
generally enables the model to build the prediction function gradually, 
reducing the risk of overfitting while allowing the ensemble to capture 
subtle nonlinearities. The strong predictive performance of GB in this 
study indicates that the learning rate allowed sufficient flexibility for 
modeling the combined effects of FRP stiffness, wrap stress, and geometric 
variation without destabilizing the training process. The number of 
estimators determines how many boosting iterations are used to refine the 
model. A sufficiently large number would be necessary to represent the 
layered effects of confinement behavior, especially given the 
heterogeneity across circular and square columns, varying FRP 
thicknesses, and different concrete strengths. The high accuracy reported 
suggests that the chosen number of trees allowed the GB model to learn 
these interactions comprehensively. If the number had been too low, the 
model would likely have missed higher-order dependencies; too high, and 
it might have begun fitting noise rather than meaningful structural 
behavior. Tree-related hyperparameters such as maximum depth, 
minimum samples split, and minimum samples leaf influence the 
complexity of each individual tree. A balanced depth would be needed to 
recognize dependencies, such as how corner rounding interacts with wrap 
stress or how stiffness ratios affect strength enhancement. The achieved 
accuracy above 90% reflects that the trees were deep enough to capture 
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these interactions but not so deep as to compromise generalization. In 
problems rooted in structural mechanics, deeper trees often help identify 
threshold behaviors and interaction regions, and the GB model’s 
performance suggests that such patterns were effectively learned. 
Subsample ratio affects the robustness of the boosting process by 
introducing randomness into how samples are selected for each tree. A 
subsampling rate below unity reduces variance and helps avoid 
overfitting, especially in datasets where experimental variability is 
inherent. The successful validation accuracy of GB implies that the 
subsample configuration improved stability without diluting the 
predictive signal. Regularization parameters, including maximum 
features and any L1 or L2 constraints when used, further shape how 
aggressively the model fits the training data. Proper regularization would 
have been essential in handling highly correlated predictors such as 
confining stress and stiffness, allowing the model to emphasize their 
contribution without being dominated by redundancies. The strong 
performance of GB relative to several other models indicates that 
regularization was appropriately set to maintain generalization capability 
across diverse column geometries and material combinations. Overall, the 
hyperparameter configuration of the GB model appears to have provided 
an effective balance between model complexity and stability. This balance 
enabled the algorithm to capture the nonlinear confinement mechanics 
that govern the axial load enhancement of FRP-wrapped concrete columns 
while maintaining strong generalization across the validation dataset. 

CN2 rule induction (CN2) 

The CN2 Rule Induction algorithm is a machine learning technique 
designed for classification tasks. It focuses on creating a set of 
interpretable and easy-to-understand rules that describe patterns within 
the data. Unlike black-box models, CN2 emphasizes transparency, making 
it ideal for domains where interpretability is critical, such as healthcare, 
law, and engineering. The algorithm searches for rules that distinguish 
between classes in the dataset. A rule takes the form: 

IF (conditions) THEN (class prediction). CN2 uses a beam search 
strategy to explore the space of potential rules. This balances 
computational efficiency and the quality of discovered rules. Rules are 
evaluated based on metrics like entropy, accuracy, or Laplace accuracy. 
The best-performing rules are retained. Once a rule is generated, it is 
applied to the dataset, and all instances covered by the rule are removed. 
This process continues iteratively until all instances are classified or a 
stopping criterion is met. To avoid overfitting, the algorithm prunes rules 
by removing conditions that do not significantly improve performance. 
The CN2 Rule Induction algorithm offers a balance between 
interpretability and performance, making it a valuable tool in domains 
where transparency is critical. While it may not achieve the predictive 
power of complex models, its ability to generate clear, actionable insights 



 
Journal of Sustainability Research 11 of 52 

J Sustain Res. 2026;8(1):e260010. https://doi.org/10.20900/jsr20260010 

ensures its continued relevance in machine learning and data-driven 
decision-making. The performance of the CN2 Rule Induction model in 
predicting the axial load enhancement of FRP-confined concrete columns 
is closely tied to the tuning and interaction of its key hyperparameters, 
which govern how rules are formed, refined, and selected. Central to CN2 
is the beam width, which controls the number of candidate rule complexes 
retained during the search process. A larger beam width expands the 
search space, allowing the algorithm to explore more potential 
combinations of predictor variables such as confinement stress, stiffness, 
and geometric ratios. This can improve predictive accuracy by enabling 
the discovery of more nuanced rule sets, but it also increases 
computational cost and raises the risk of overfitting, especially when the 
model begins to capture noise associated with less influential variables. A 
narrower beam width constrains the search, promoting more generalized 
rules but potentially overlooking important interactions. The significance 
threshold plays an equally important role by determining whether a 
candidate rule possesses sufficient statistical strength to be accepted into 
the rule list. Higher significance thresholds ensure that only robust rules, 
strongly associated with accurate classification of Fco/Fcc enhancement, 
are included. This produces a cleaner and more reliable rule set but may 
reduce model sensitivity to subtle variations caused by secondary factors 
such as size and aspect ratio. Lower significance thresholds allow more 
rules to enter the model, which increases granularity but may also 
introduce instability and inconsistency in predictions. The minimum 
coverage parameter influences how broadly applicable each rule must be 
before it is considered valid. Larger coverage requirements prevent the 
model from generating overly specific rules that capture only small 
subsets of the data, thereby promoting generality and better performance 
on unseen samples. In contrast, low coverage settings allow the algorithm 
to form narrow rules that may explain rare patterns in the dataset but are 
unlikely to improve overall predictive accuracy. Together with the 
evaluation measure typically based on entropy, likelihood ratio, or 
weighted accuracy. These hyperparameters shape the model’s learning 
behavior. The evaluation measure influences how the algorithm ranks 
rule candidates, with measures emphasizing information gain or 
probability often steering CN2 toward rules that capture the dominant 
predictors, such as confining stress and stiffness, which the sensitivity 
analysis identified as decisive factors. Through the interaction of these 
hyperparameters, the CN2 model balances exploration of the predictor 
space with the need to avoid overfitting. Proper tuning ensures that the 
resulting rule set remains interpretable while maintaining the high 
accuracy observed in the study, where CN2 performed comparably to 
other strong learners like gradient boosting and SVM. 
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Naive bayes (NB) 

The behavior of the Naive Bayes model in predicting the axial load 
enhancement of FRP-confined concrete columns is shaped primarily by 
how its hyperparameters manage probability estimation, handle 
numerical features, and control the model’s sensitivity to data distribution. 
Since Naive Bayes relies on the assumption of feature independence, its 
hyperparameters influence how strictly or flexibly this assumption is 
applied when estimating the likelihood of each input variable, such as 
confinement stress, stiffness, cross-sectional ratios, and corner radius. For 
datasets composed mostly of continuous variables, as in this study, the 
Gaussian variant is commonly used, and its key hyperparameter is the 
variance smoothing term. This parameter regulates the stability of the 
estimated feature variances by adding a small constant to prevent division 
by zero or extremely small variances that could otherwise distort 
probability calculations. When variance smoothing is too small, the model 
becomes overly sensitive to slight fluctuations in numerical predictors, 
leading to unstable probability estimates and poor generalization. When 
it is increased, the distributions become smoother and more robust, but 
potentially at the cost of reduced sensitivity to meaningful distinctions 
between data classes. The underperformance of Naive Bayes in this study 
suggests that even with reasonable smoothing, the independence 
assumption limits its ability to capture the strong interactions among 
variables like confinement pressure, aspect ratio, and size effect. In 
multinomial or categorical variants, which are less suited to this type of 
dataset, the primary hyperparameter is alpha in Laplace or Lidstone 
smoothing. This parameter prevents zero-probability issues for rarely 
occurring classes or attribute levels. Although smoothing can help stabilize 
predictions, it cannot compensate for the model’s inability to capture 
nonlinear relationships or variable interactions essential in structural 
performance prediction. When alpha is small, the model closely follows 
the empirical distribution but may overfit when categories are sparse. 
When alpha is larger, probability estimates become more uniform, 
improving robustness but reducing fidelity to actual patterns. Given the 
physics-driven nature of FRP confinement and the nonlinear interactions 
among its governing variables, the simplicity of Naive Bayes limits its 
predictive capability, regardless of hyperparameter adjustments. Even 
optimal variance or Laplace smoothing cannot overcome the model’s 
structural assumption of independent predictors. As a result, its lower 
accuracy relative to models like GB, CN2, SVM, and KNN reflects both its 
restricted functional form and the mismatch between its probabilistic 
assumptions and the complexity of the FRP-confined concrete dataset. 
Naive Bayes (NB) is a family of probabilistic classification algorithms 
based on Bayes' Theorem. It assumes that features are conditionally 
independent given the class label, a simplification that is often untrue in 
practice but allows for efficient computation. Despite this "naive" 
assumption, NB performs surprisingly well in many real-world scenarios, 
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especially in text classification and other high-dimensional data 
applications. 

The foundation of Naive Bayes is Bayes' Theorem: 

𝑃(𝐶 𝑋⁄ ) =
𝑃(𝑋 𝐶⁄ )𝑃(𝐶)

𝑃(𝑋)
 (7) 

Where: 𝑃(𝐶 𝑋⁄ ) is Posterior probability of class C given the feature vector 
X, 𝑃(𝑋 𝐶⁄ ) is Likelihood of X given the class C, 𝑃(𝐶) is Prior probability 
of class C, and 𝑃(𝑋) is Marginal probability of the feature vector X.NB 
assumes that all features are independent: 

𝑃(𝑋 𝐶⁄ ) = 𝑃(𝑥1 𝐶⁄ ). 𝑃(𝑥2 𝐶⁄ ) … … 𝑃(𝑥𝑛 𝐶⁄ ) (8) 

Where:𝑥1,𝑥2,..... and𝑥𝑛 are the individual features of X. 
From Equation (8), the model predicts the class CCC with the highest 

posterior probability: 

𝐶̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝐶𝑃(𝐶 𝑋⁄ ) (9) 

Naive Bayes is a simple yet powerful tool for classification, especially 
in text-based and high-dimensional datasets. While it makes strong 
independence assumptions, it often performs surprisingly well in 
practical applications, making it a staple in the machine learning toolkit. 
By balancing speed, simplicity, and effectiveness, Naive Bayes remains a 
reliable choice for interpretable and fast predictive modeling. 

Support vector machine (SVM) 

Support Vector Machine (SVM) is a powerful supervised learning 
algorithm used for both classification and regression tasks. It excels in 
finding an optimal hyperplane that separates data points of different 
classes in a high-dimensional space. SVM is widely recognized for its 
effectiveness, especially in small or medium-sized datasets with clear class 
boundaries. Support Vector Machine (SVM) is a versatile and robust 
algorithm for both classification and regression tasks. It shines in high-
dimensional datasets and excels at finding the optimal boundary between 
classes. While computationally intensive and sensitive to parameter 
tuning, SVM remains a go-to choice for interpretable and high-performing 
models in structured data analysis. The performance of the Support Vector 
Machine model for predicting axial load enhancement in FRP-confined 
concrete columns is governed largely by how its hyperparameters control 
margin width, kernel behavior, and the model’s sensitivity to nonlinear 
patterns in the predictors. Central to SVM is the regularization parameter 
C, which determines the trade-off between achieving a wide separating 
margin and minimizing classification errors. When C is small, the model 
prioritizes a smoother decision boundary and tolerates misclassified 
points, promoting generalization but potentially overlooking important 
nonlinear interactions among variables such as confinement stress, 
stiffness, and geometric ratios. When C is large, the model forces tighter 
fitting around the training data, capturing more complex relationships but 
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becoming vulnerable to overfitting, especially in datasets with noise or 
overlapping classes. Equally influential is the kernel choice, which dictates 
how the input space is transformed to allow linear separation of patterns 
that are not linearly separable. The radial basis function (RBF) kernel is 
often suitable for structural mechanics datasets because it captures 
localized nonlinear interactions, while the linear kernel assumes a global 
linear relationship among variables. The polynomial kernel introduces 
intermediate flexibility by controlling the order of interactions. Each 
kernel brings its own hyperparameters, most notably gamma in the RBF 
kernel. Gamma determines how far the influence of a single training 
sample extends. When gamma is small, the decision function depends on 
broader patterns, yielding smoother boundaries that may not fully capture 
the combined effects of confinement and geometry. When gamma is large, 
the influence becomes more localized, enabling the model to follow 
intricate variations in the predictor space but risking the formation of 
overly complex boundaries. For polynomial kernels, the degree controls 
the complexity of interactions modeled: higher degrees capture richer 
nonlinearities but can make the solution unstable. The coefficient term in 
polynomial and sigmoid kernels influences how strongly interactions 
depend on baseline offsets. Kernel-specific scaling parameters also play a 
role in preventing numerical instabilities when predictors span different 
magnitudes. The interplay of these hyperparameters determines whether 
SVM can adequately represent the physical and mechanical interactions 
inherent to FRP confinement. Properly tuned C and gamma, combined 
with an appropriate kernel choice, allow SVM to capture the nonlinear 
coupling among confinement stress, stiffness, and cross-sectional 
geometry. This explains its strong performance in the study, where it 
achieved accuracy exceeding 90%, indicating that the optimized 
configuration effectively learned the structural behavior patterns 
embedded in the dataset. 

Stochastic gradient descent (SGD) 

Stochastic Gradient Descent (SGD) is an optimization algorithm widely 
used in machine learning and deep learning for minimizing a cost function 
by iteratively updating model parameters. Unlike traditional gradient 
descent, which computes gradients using the entire dataset, SGD updates 
parameters using a single randomly selected data point (or a small batch), 
making it computationally efficient for large datasets. Stochastic Gradient 
Descent (SGD) is a foundational optimization algorithm in machine 
learning and deep learning. Its efficiency, simplicity, and scalability make 
it a preferred choice for large datasets. While sensitive to 
hyperparameters, enhancements like momentum, adaptive learning rates, 
and mini-batches mitigate many of its challenges. SGD remains a 
cornerstone in modern optimization techniques, enabling rapid model 
training for complex tasks. The performance of the Stochastic Gradient 
Descent model in predicting the axial load enhancement of FRP-confined 



 
Journal of Sustainability Research 15 of 52 

J Sustain Res. 2026;8(1):e260010. https://doi.org/10.20900/jsr20260010 

concrete columns depends heavily on how its hyperparameters regulate 
learning stability, convergence behavior, and the model’s ability to 
approximate complex decision boundaries. The learning rate is the most 
critical parameter because it governs how aggressively the model updates 
its weights with each training sample. When the learning rate is too high, 
the optimization path becomes unstable and oscillatory, preventing the 
model from converging to a meaningful solution. When it is too low, the 
model converges very slowly and may become trapped in shallow minima, 
leading to underfitting. Variants such as constant, optimal, or adaptive 
learning rate schedules influence whether the model maintains a steady 
update pattern or adjusts to the loss landscape as training progresses. The 
choice of loss function also dictates how SGD responds to misclassified or 
poorly fitted samples. Hinge loss steers the model toward behavior similar 
to linear SVM, while log loss encourages probabilistic outputs. For a 
dataset with nonlinear interactions involving confinement stress, stiffness, 
and geometric features, linear loss functions restrict the model to linear 
decision boundaries, which contributes to its limited accuracy. 
Incorporating penalty terms such as L1, L2, or elastic-net regularization 
further shapes the optimization space. L2 regularization smooths the 
solution by discouraging large weights, helping prevent overfitting but 
limiting model expressiveness. L1 encourages sparsity, which can be 
beneficial for feature selection but may be too restrictive when multiple 
variables jointly influence the structural performance. Elastic-net blends 
both effects but still operates under the assumption that a linear 
combination of features is adequate to represent the underlying 
relationships. The number of iterations and stopping criteria define how 
long the model is allowed to refine its solution. Insufficient iterations lead 
to premature stopping, while excessive iterations exacerbate overfitting, 
especially when the data contain noise or overlapping classes. Shuffle 
settings determine whether the order of samples varies between epochs; 
shuffling typically improves convergence by reducing bias from data 
ordering. The epsilon parameter in some SGD variants influences the 
tolerance threshold for convergence and controls how aggressively the 
algorithm terminates optimization when improvements diminish. Overall, 
the underperformance of SGD in this study reflects the mismatch between 
its linear modeling structure and the nonlinear, interaction-dominated 
relationships inherent to FRP confinement mechanics. Even with well-
tuned learning rates, regularization, and iteration settings, SGD remains 
limited by its reliance on linear separability, making it unsuitable for 
capturing the coupled effects of confinement pressure, stiffness, and 
geometric ratios. This constraint explains why its accuracy fell below 70%, 
in contrast to more flexible models like GB, CN2, SVM, and KNN. 

K-Nearest neighbors (KNN) 

The K-Nearest Neighbors (KNN) algorithm is a simple yet effective 
supervised machine learning method used for classification and 
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regression tasks. It is a non-parametric algorithm, meaning it makes no 
assumptions about the underlying data distribution, and is based on the 
principle of proximity predicting outcomes based on the similarity of data 
points.KNN is a robust, interpretable, and versatile algorithm suitable for 
both classification and regression tasks. Despite its simplicity, it delivers 
competitive results in many scenarios, especially for small datasets with 
well-separated classes. Addressing its computational and scaling 
challenges ensures effective deployment in real-world applications. The 
effectiveness of the K-Nearest Neighbors model in predicting the axial load 
enhancement of FRP-confined concrete columns depends largely on how 
its hyperparameters control neighborhood structure, distance evaluation, 
and the smoothness of decision boundaries. The most influential 
parameter is k, the number of neighbors considered in classification. 
When k is small, the model becomes highly sensitive to local fluctuations 
and noise in the dataset, capturing fine-scale variations in variables such 
as confinement stress, stiffness, and geometric ratios. This can lead to 
overfitting because isolated or noisy samples exert disproportionate 
influence. When k is large, the model produces overly smoothed decision 
boundaries that may overlook important nonlinear transitions, 
particularly those related to the interaction between FRP stiffness and 
column shape. Optimal performance arises when k balances local detail 
with global stability, allowing the model to capture nonlinear behavior 
without becoming erratic. The choice of distance metric further shapes 
how the model interprets similarity between samples. Euclidean distance 
is commonly used, but its effectiveness depends on proper feature scaling, 
since unscaled variables such as stiffness ratios or confinement stress can 
dominate distance computations. Alternative metrics such as Manhattan 
or Minkowski can alter sensitivity to feature magnitudes and outliers. The 
weighting scheme also significantly affects predictions. Uniform weighting 
treats all neighbors equally, whereas distance-based weighting assigns 
greater influence to closer samples. For datasets where confinement 
behavior exhibits gradual transitions, distance weighting helps emphasize 
physically similar conditions and improves classification stability. The 
algorithm parameter determines computational efficiency and search 
structure. Methods such as ball tree or KD-tree accelerate neighbor search 
but assume certain distributions in the feature space; their effectiveness is 
reduced if the dataset contains complex, high-dimensional, or irregular 
patterns. The leaf size setting influences the trade-off between search 
precision and computational cost, with smaller leaf sizes improving 
accuracy at the expense of speed. Feature scaling is an implicit but 
essential hyperparameter choice. Without normalization or 
standardization, features with larger numeric ranges overwhelm the 
distance function, distorting the importance of variables such as corner 
radius or size effect. Proper scaling ensures that all variables contribute 
proportionally to similarity assessment. Overall, the KNN model performs 
well because its non-parametric structure captures nonlinear interactions 
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between confinement stress, material stiffness, and geometric 
characteristics without requiring explicit functional assumptions. 
However, its sensitivity to k, distance metrics, and feature scaling means 
that careful hyperparameter tuning is crucial for achieving the high 
accuracy observed in this study. 

Tree decision (Tree) 

A Decision Tree is a supervised machine learning algorithm used for 
classification and regression tasks. It structures data into a tree-like graph 
of decisions and possible outcomes, making it both interpretable and 
flexible. The algorithm recursively splits the dataset based on feature 
values to minimize a defined error metric or maximize information gain. 
Decision Trees are powerful tools for both classification and regression 
tasks, offering intuitive and interpretable solutions. While prone to 
overfitting and instability, techniques like pruning and ensemble methods 
(e.g., Random Forest) can mitigate these issues, making Decision Trees 
invaluable in data-driven decision-making and prediction tasks. The 
performance of the Decision Tree model in predicting the axial load 
enhancement of FRP-confined concrete columns is governed by 
hyperparameters that regulate tree complexity, splitting behavior, and the 
balance between model interpretability and predictive accuracy. One of 
the most influential parameters is the maximum depth, which determines 
how many hierarchical splits the tree is allowed to form. Shallow trees 
tend to underfit because they cannot adequately capture the nonlinear 
interactions among confinement stress, stiffness, geometric properties, 
and material characteristics. Deep trees, however, tend to memorize the 
training data, producing highly irregular partitions that fail to generalize 
well. The depth at which the tree stabilizes therefore plays a critical role 
in controlling overfitting. The minimum samples required for a split and 
the minimum samples per leaf also shape the granularity of the decision 
boundaries. Smaller thresholds allow the model to create finely detailed 
partitions that reflect subtle variations in the dataset, such as changes in 
confinement effectiveness with corner rounding or stiffness increments. 
However, overly small thresholds produce branches that respond to noise 
rather than meaningful physical trends. Larger thresholds smooth the 
structure of the tree, reducing variance but potentially overlooking 
important patterns linked to FRP confinement mechanisms. The choice of 
splitting criterion affects how the tree decides where to partition the 
feature space. Gini impurity and entropy both measure the homogeneity 
of a node but respond differently to class distributions. Entropy is more 
sensitive to small changes in probability distributions, while Gini tends to 
produce slightly faster and often more stable splits. The criterion 
influences how strongly the model prioritizes variables like confining 
stress and stiffness, which typically dominate early splits due to their high 
predictive power. The maximum number of features considered at each 
split controls the dimensionality of the search process. Using all features 
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at every split ensures that the tree can identify the strongest predictors at 
each step, often elevating confinement stress and stiffness to the top of the 
hierarchy. Restricting the number of features introduces randomness and 
can mitigate overfitting but may reduce accuracy when certain variables 
consistently contribute more to classification outcomes. Pruning-related 
hyperparameters, such as cost-complexity pruning, enable the model to 
remove branches that contribute little to predictive performance. This 
helps correct the natural tendency of trees to overfit, especially when the 
dataset contains overlapping or noisy samples. Proper pruning results in 
a more stable structure that aligns better with the underlying mechanics 
of FRP confinement. Overall, these hyperparameters collectively 
determine how well the Decision Tree model captures the nonlinear and 
interaction-driven behavior of FRP-wrapped short concrete columns. With 
appropriate tuning, the model can effectively identify dominant 
predictors and produce clear, interpretable decision rules, which explains 
its high accuracy within the study. However, without careful control of 
depth, splitting thresholds, and pruning, the model can easily become 
either too simplistic or overly specialized, highlighting the importance of 
balanced hyperparameter optimization. 

Random forest (RF) 

Random Forest (RF) is an ensemble learning method for classification, 
regression, and other tasks. It operates by building multiple decision trees 
during training and outputs the average prediction for regression or the 
majority vote for classification. By aggregating predictions from many 
trees, RF improves accuracy, reduces overfitting, and increases robustness. 
Random Forest is a robust and versatile algorithm that performs well 
across a range of tasks. Its ability to reduce overfitting and handle diverse 
datasets makes it an essential tool for machine learning practitioners. 
While computationally intensive, the accuracy and stability it provides 
justify its usage, particularly for applications requiring strong 
generalization and robustness. The predictive performance of the Random 
Forest model for estimating the axial load enhancement of FRP-confined 
concrete columns depends on hyperparameters that control the ensemble 
structure, diversity among trees, and the balance between variance 
reduction and model generalization. One of the most influential 
hyperparameters is the number of trees in the forest, which determines 
the stability of the ensemble. A larger number of trees reduces variance 
by averaging many different decision boundaries, making the model less 
sensitive to noise in variables such as confinement stiffness, stress ratio, 
or geometric parameters. However, extremely large forests provide 
diminishing returns and increase computational cost without meaningful 
accuracy gains. The maximum depth of individual trees governs how 
complex each tree is permitted to become. Deep trees capture detailed 
nonlinear relationships and interactions between features such as corner 
radius or size effect, but they also risk overfitting if grown without 
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constraints. Shallow trees generalize better but may miss critical patterns 
that influence the confinement efficiency of FRP wrapping. The model’s 
overall behavior results from the interplay between tree depth and the 
averaging effect of the ensemble. The number of features considered at 
each split is central to creating diversity within the forest. By restricting 
the number of candidate variables at each node, Random Forest ensures 
that different trees explore different subsets of the feature space. This 
randomness prevents dominant predictors such as confinement stress or 
stiffness from controlling all early splits, enabling the forest to capture 
complementary effects from geometric ratios or material indices. If too 
few features are used, the model risks underrepresenting strong 
predictors; if too many are included, trees may become overly similar and 
reduce the ensemble’s advantage. Minimum samples per split and per leaf 
regulate how granular each tree becomes. Smaller thresholds allow 
intricate partitions in regions where small variations in stiffness or 
geometric configuration lead to changes in behavior, but they also amplify 
sensitivity to noise. Larger thresholds smooth the partitions and promote 
generalization, though at the cost of potentially overlooking meaningful 
structural transitions. Bootstrap sampling, which determines whether 
each tree is trained on a randomly sampled subset of the data, directly 
affects variance and robustness. With bootstrapping enabled, individual 
trees are exposed to different training subsets, enhancing diversity and 
reducing the risk that the forest overfits specific patterns. Disabling 
bootstrapping makes the forest behave more like a uniform ensemble of 
similar trees, limiting its ability to generalize. The split criterion, typically 
Gini impurity or entropy, dictates how the model evaluates the quality of 
each split. Although both criteria function similarly, their subtle 
differences influence the prioritization of dominant predictors. For 
example, entropy may produce slightly more refined splits when 
differences in confinement parameters are subtle, while Gini offers 
computational efficiency and stable performance. Overall, the Random 
Forest model performs well because its hyperparameters collectively 
enable it to capture complex, nonlinear interactions among confinement 
stress, stiffness, and geometric features while mitigating overfitting 
through averaging and controlled randomness. The moderately lower 
accuracy compared to models like Gradient Boosting or CN2 reflects the 
challenge of fully capturing certain fine-scale transitions in FRP 
confinement behavior, but the model remains robust and reliable when 
hyperparameters are properly tuned. 

Response surface methodology (RSM) 

Response Surface Methodology (RSM) is a statistical and mathematical 
technique used for modeling and analyzing problems where a response of 
interest is influenced by multiple variables. Its primary goal is to optimize 
the response by determining the relationships between the input variables 
and the response. RSM is widely used in experimental design, process 
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optimization, and product development. Response Surface is a graphical 
representation of the relationship between the input variables 
(independent variables) and the response (dependent variable). RSM 
relies on structured experimental designs such as factorial designs, central 
composite designs (CCD), and Box-Behnken designs.RSM is a powerful tool 
for experimental optimization and understanding factor-response 
relationships. While it excels in situations with relatively few factors and 
clear functional relationships, it can be complemented with advanced 
machine learning methods for highly nonlinear or complex systems. Its 
efficiency and graphical outputs make it an invaluable method in various 
engineering, material science, and industrial optimization applications. 

Sensitivity Analysis 

The axial capacity of concrete columns wrapped with Fiber Reinforced 
Polymer (FRP) sheets is a critical aspect in designing reinforced concrete 
structures, particularly in terms of improving their load-bearing capacity, 
durability, and resistance to various forms of stress. Sensitivity analysis is 
an essential technique used to identify how different factors (inputs) 
influence the axial capacity (response) of these columns. The sensitivity 
analysis examines the impact of various design parameters on the axial 
capacity of short concrete columns wrapped with FRP sheets. These 
columns are typically used in structural engineering to enhance the 
performance and longevity of existing concrete structures or to improve 
the load resistance capacity of new constructions. Columns can have 
different cross-sectional shapes (circular, square, rectangular, or other 
irregular shapes), which will influence the distribution of stresses and the 
effectiveness of the FRP wrapping. The type of FRP material (e.g., carbon, 
glass, or aramid fibers) affects the bonding characteristics, stiffness, 
strength, and overall enhancement of the concrete column. These 
materials differ in terms of their modulus of elasticity, tensile strength, 
and layer thickness. The thickness of the FRP sheets around the concrete 
column directly impacts the axial load resistance. Thicker wraps can offer 
more confinement, leading to a greater enhancement in the column's axial 
capacity. The bonding between the FRP sheet and the concrete surface 
plays a crucial role in transferring the stresses from the concrete to the 
FRP. Poor adhesion reduces the efficiency of the FRP wrapping. The 
strength of the concrete (e.g., compressive strength fc) is an important 
factor that affects the column's overall capacity. Higher-strength concrete 
generally leads to an increase in the axial capacity, particularly when 
enhanced by FRP wrapping. The orientation of the fibers in the FRP sheet 
(whether longitudinal, transverse, or a combination) will affect the 
confinement effectiveness and hence the axial load capacity. The 
dimensions of the concrete column (e.g., diameter or side length, height) 
significantly influence the axial load capacity. Larger columns tend to 
have higher axial capacity, but the effect of wrapping with FRP varies 
depending on the geometry. The curing process and the conditions under 
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which the concrete sets (e.g., temperature, humidity) affect the overall 
performance of the concrete and can influence the axial capacity of the 
column wrapped with FRP. To conduct sensitivity analysis for the axial 
capacity of short concrete columns wrapped with FRP sheets, a 
mathematical or computational model (such as finite element analysis, 
nonlinear regression models, or machine learning-based models) can be 
used to evaluate the relationship between input parameters and the axial 
load response. A design of experiments (DOE) approach can be used to 
select combinations of the parameters mentioned above. A full factorial 
design or central composite design (CCD) might be used to systematically 
vary input parameters like column shape, FRP thickness, concrete strength, 
etc. Finite Element Analysis (FEA) can be used to simulate the behavior of 
concrete columns wrapped with FRP under different loading conditions. 
In this context, the axial capacity of the column can be determined by 
considering various material properties and geometrical configurations. 
Software such as ABAQUS or ANSYS is often used to simulate the behavior 
of the FRP-wrapped columns. Once the simulation or model is developed, 
global sensitivity analysis can be conducted using methods like variance-
based methods (e.g., Sobol indices), regression-based sensitivity analysis 
and Monte Carlo simulations to account for uncertainty in input 
parameters. From the sensitivity analysis, the impact of each parameter 
on the axial capacity can be determined. Circular columns generally show 
the highest axial capacity when wrapped with FRP due to uniform stress 
distribution. Rectangular or square columns may exhibit different 
confinement effects, influencing the overall axial capacity differently 
depending on the aspect ratio. The type of FRP material (e.g., carbon FRP 
is stronger and stiffer than glass FRP) can significantly enhance the axial 
load capacity of the column. Thicker FRP sheets also lead to higher axial 
capacity as they offer better confinement to the concrete. High-strength 
concrete generally results in higher axial capacity, with FRP sheets 
providing more effective confinement. In contrast, for low-strength 
concrete, the FRP sheets offer less improvement in axial load resistance. 
The quality of bonding between the FRP sheets and the concrete is a 
critical factor. Any failure or delamination at the interface reduces the 
axial capacity enhancement provided by FRP wrapping. Proper curing 
conditions, especially temperature and humidity, impact the compressive 
strength of concrete, influencing the axial load capacity of the wrapped 
column. Sensitivity analysis can provide insight into the most effective 
combination of parameters (e.g., FRP type, thickness, and column shape) 
to maximize the axial capacity of short concrete columns. This can guide 
engineers in selecting optimal materials and designs for concrete 
structures. By understanding the parameters that most influence axial 
capacity, unnecessary over-engineering can be avoided, leading to cost-
effective designs that still meet safety and performance standards. The use 
of FRP-wrapped concrete columns can lead to the reuse of materials and 
longer-lasting structures, contributing to sustainable construction 
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practices. Sensitivity analysis provides a foundation for developing design 
guidelines that can be used in practice to improve the safety and 
performance of concrete columns in buildings and infrastructure. 
Sensitivity analysis of the axial capacity of short concrete columns 
wrapped with FRP sheets is a crucial step in optimizing column design and 
ensuring safe and efficient use of materials. By understanding the impact 
of various factors such as column shape, FRP properties, concrete strength, 
and curing conditions, engineers can make informed decisions about 
material selection, design configurations, and construction techniques, 
ultimately enhancing the performance and sustainability of concrete 
structures. A preliminary sensitivity analysis was carried out on the 
collected database to estimate the impact of each input on the (Y) values. 
“Single variable per time” technique is used to determine the “Sensitivity 
Index” (SI) for each input using Hoffman & Gardener [21] formula as 
follows: 

𝑆𝐼(𝑋𝑛) =  
𝑌(𝑋𝑚𝑎𝑥) − 𝑌(𝑋𝑚𝑖𝑛)

𝑌(𝑋𝑚𝑎𝑥)
 (10) 

A sensitivity index of 1.0 indicates complete sensitivity, a sensitivity 
index less than 0.01 indicates that the model is insensitive to changes in 
the parameter. Figure 3 shows the sensitivity analysis with respect to 
Fco/Fcc. The sensitivity analysis with respect to Fco/Fcc having 40% Conf 
influence, 31% Stiff influence, 18% d/b influence, 11% r/b influence and 0% 
b/b0 influence on the axial capacity of short concrete columns of different 
shapes wrapped with FRP sheets. The sensitivity analysis conducted on 
short concrete columns wrapped with Fiber Reinforced Polymer (FRP) 
sheets investigates how different factors influence the axial capacity (the 
load-bearing capacity) of these columns. Specifically, the sensitivity 
analysis looks at the ratio of Fco/Fcc, as well as other important 
parameters, and their impacts on axial capacity. Fco/Fcc Ratio (40% 
Contribution): The ratio Fco/Fcc represents the strength ratio of the 
concrete with and without external FRP confinement, where Fco is the 
axial strength of the confined concrete and Fcc is the axial strength of 
unconfined concrete. A 40% influence on axial capacity means that Fco/Fcc 
is a highly significant factor in determining the load-bearing capacity of 
the concrete column. This implies that a higher Fco/Fcc ratio indicates 
better confinement provided by the FRP wrap, leading to a larger increase 
in axial capacity. Thus, selecting an appropriate FRP material that 
enhances Fco while ensuring good bonding with the concrete is crucial for 
improving axial strength. This ratio is particularly important when 
optimizing the type of FRP wrapping (such as carbon or glass fibers) and 
the number of FRP layers used. Stiffness (31% Contribution): The stiffness 
of the concrete column (or more specifically the stiffness of the FRP wrap 
and its interaction with concrete) plays a vital role in determining the axial 
capacity. Stiffness typically refers to the column's ability to resist 
deformation under axial load.31% influence on the axial capacity 
indicates that the column's material properties (including the modulus of 
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elasticity of both the FRP and concrete) have a substantial impact on the 
column's ability to withstand compressive forces. This implies that a 
higher stiffness of the FRP wrap leads to better confinement and more 
efficient load distribution, improving the column’s axial load capacity. In 
practice, this suggests that selecting an FRP material with high stiffness 
(e.g., carbon FRP) will lead to enhanced axial strength, especially in high-
performance applications. d/b (18% Contribution):d/b refers to the 
diameter-to-length ratio or width-to-length ratio (for circular or 
rectangular columns, respectively), representing the column's geometric 
shape.18% influence indicates that the geometry of the column (its cross-
sectional shape and aspect ratio) plays a significant, though slightly 
smaller, role in determining the axial capacity. Shorter and stiffer columns 
typically show higher axial capacities than slender ones. This implies that 
columns with a smaller d/b ratio (more compact or less slender columns) 
generally exhibit better performance when wrapped with FRP because the 
confinement effect is more evenly distributed. This also emphasizes the 
need for optimizing column dimensions based on the intended application. 
r/b (11% Contribution):r/b represents the radius-to-length or radius-to-
width ratio, which is another geometric aspect affecting how forces are 
transferred within the column.11% influence indicates that the radius-to-
length ratio also contributes to the axial capacity but to a lesser degree 
than Fco/Fcc and stiffness. A column with a higher radius-to-length ratio 
might undergo more distortion under axial load, potentially leading to 
reduced performance. This implies that a balanced r/b ratio is necessary 
for optimizing confinement efficiency and improving axial capacity. In 
practice, columns with more compact cross-sections or higher r/b values 
may benefit more from FRP wrapping.b/b0 (0% Contribution):b/b0 is the 
width-to-original width ratio, indicating the relative increase in the width 
of the column due to the FRP wrapping or the change in dimensions after 
confinement.0% influence suggests that this parameter has no significant 
impact on the axial capacity of the column, implying that, within the scope 
of the study, variations in the b/b0 ratio are negligible in determining the 
axial load-bearing capacity when FRP wraps are used. This implies that 
since b/b0 has no influence, this suggests that other factors (such as Fco/Fcc, 
stiffness, and geometry) are far more critical to the axial capacity than the 
column's increase in width due to the FRP application. The findings from 
the sensitivity analysis have direct implications for the design and 
strengthening of concrete structures in the field. The factors with the 
greatest influence, particularly Fco/Fcc (40%) and stiffness (31%), should 
be prioritized when selecting FRP materials and designing the wrapping 
system for concrete columns. In practical applications, a higher Fco/Fcc 
ratio can be achieved by using FRP materials with higher tensile strength, 
such as carbon FRP, which enhances confinement. The stiffness of the FRP 
material is crucial, especially in cases where the column needs to carry 
significant axial loads. Thus, materials with high elastic moduli should be 
chosen for better confinement. Column dimensions should be optimized 
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to reduce d/b and r/b ratios, ensuring the columns are not too slender, 
which might hinder the confinement effect provided by the FRP wrapping. 
The b/b0 ratio being insignificant in the sensitivity analysis suggests that, 
in most practical applications, column dimensions need not be modified 
drastically for the sake of the FRP wrapping. The sensitivity analysis of the 
axial capacity of short concrete columns wrapped with FRP sheets reveals 
the most influential parameters affecting the strength and performance of 
these columns. The Fco/Fcc ratio and stiffness were found to have the 
highest impact, emphasizing the importance of material properties and 
confinement efficiency. The geometry of the column (expressed through 
d/b and r/b ratios) also plays a significant role, while the b/b0 ratio was 
found to have no noticeable impact on axial capacity. For field applications, 
this analysis suggests that engineers should focus on optimizing the FRP 
material selection, ensuring appropriate stiffness and confinement 
efficiency, and optimizing column geometry to maximize axial capacity. 
These considerations are crucial for improving the safety, durability, and 
cost-effectiveness of concrete structures wrapped with FRP, especially in 
the context of structural rehabilitation and strengthening. 

 

Figure 3. Sensitivity analysis with respect toFco/Fcc.  

RESULTS AND DISCUSSION 

GB Model 

The developed (GB) model was based on (Scikit-learn) method with 
learning rate of 0.1and minimum splitting subset of 2. Nine trials were 
conducted for each model started with one tree and one tree level and 
increased gradually to four trees and nine tree levels. The reduction of the 
prediction Error (%) for each trail is presented in Figure 4. Accordingly, 
the models with four trees and nine tree levels are considered the 
optimum ones.  Performance metrics of the three developed models for 
both training and validation dataset are listed in Table 2. The average 
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achieved accuracy was (92%) and the R2 is 0.96. The relations between 
calculated and predicted values are shown in Figure 5. The analysis of a 
Gradient Boosting (GB) model for predicting the axial capacity of short 
concrete columns of different shapes wrapped with FRP sheets involves 
considering the design of the model and its implications for real-world 
application. Gradient Boosting is well-suited for capturing non-linear 
relationships and interactions among features, which are often present in 
structural engineering problems. The choice of GB suggests that the 
problem involves complex dependencies between input variables (e.g., 
column shape, material properties, FRP thickness, etc.) and axial capacity. 
The effectiveness of the model depends on the quality and relevance of 
input features, such as column geometry (circular, square, rectangular), 
concrete compressive strength, FRP properties (thickness, tensile strength, 
modulus of elasticity) and wrapping configuration.The high accuracy (92%) 
and R² (0.96) suggest effective feature selection or engineering, capturing 
most of the variability in the axial capacity.Performance metrics indicate 
a robust training process, likely involving hyperparameter tuning to 
optimize learning rates, tree depths, and boosting stages. With an average 
achieved accuracy of 92%, the model is reliable for predicting axial 
capacity in most scenarios. However, this accuracy may vary with the 
quality and representativeness of the input data. Any significant 
deviations in the field data from the training data distribution could 
reduce performance. The R² value of 0.96 indicates a strong correlation 
between predicted and actual axial capacities, suggesting the model 
captures the majority of the variation. This implies a high level of 
confidence in its predictions for design and analysis purposes. A potential 
limitation lies in the generalization ability of the model. If the training data 
doesn't adequately represent all possible shapes, materials, or boundary 
conditions, predictions for new scenarios may be less reliable. Practical 
application requires careful measurement of input features. Inaccurate 
data collection in the field (e.g., variability in material properties) could 
lead to errors in predictions. Different shapes (circular, square, 
rectangular) might introduce unique behavior in how FRP confinement 
enhances axial capacity. The model's performance across these shapes 
should be validated. In field applications, the GB model should 
complement, not replace, code-based methods. Engineers must ensure 
that the model's predictions align with safety factors and design codes. Test 
the model against field data from diverse real-world scenarios to confirm 
its reliability and robustness. Introduce factors of safety to account for 
potential prediction errors or uncertainties in field conditions. 
Periodically update the model with new data to improve its generalization 
capabilities. Develop software tools or user interfaces that simplify 
inputting parameters and interpreting results for practitioners. Align the 
model outputs with existing design codes to facilitate its adoption by 
structural engineers. In summary, the GB model demonstrates strong 
predictive performance for short FRP-wrapped concrete columns' axial 
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capacity. While its accuracy and R² value are impressive, practical 
application should focus on validating the model, managing uncertainties, 
and ensuring its alignment with design codes for safe and effective use. 

Table 2. Performance measurements of developed models for (Fc).  

Model Dataset SSE MAE (MPa) MSE (MPa) RMSE (MPa) Error (%) Accuracy (%) R2 
GB Training 10.4 0.055 0.026 0.162 10% 90% 0.94 

 Validation 1.1 0.030 0.011 0.106 7% 93% 0.98 
CN2 Training 18.3 0.088 0.046 0.214 13% 87% 0.90 

 Validation 1.3 0.035 0.013 0.112 7% 93% 0.97 
NB Training 340.7 0.606 0.852 0.923 56% 44% 0.41 

 Validation 117.9 0.690 1.179 1.086 67% 33% 0.38 
SVM Training 19.9 0.117 0.050 0.223 13% 87% 0.88 

 Validation 1.4 0.050 0.014 0.117 7% 93% 0.97 
SGD Training 114.6 0.385 0.286 0.535 32% 68% 0.45 

 Validation 22.5 0.345 0.014 0.474 29% 71% 0.53 
KNN Training 8.8 0.052 0.022 0.148 9% 91% 0.95 

 Validation 1.6 0.050 0.016 0.127 8% 92% 0.97 
Tree Training 10.3 0.055 0.026 0.160 10% 90% 0.94 

 Validation 1.1 0.030 0.011 0.106 7% 93% 0.97 
RF Training 20.1 0.096 0.050 0.224 14% 86% 0.88 

 Validation 2.9 0.063 0.029 0.171 11% 89% 0.94 
 

 

Figure 4. Reduction in Error % with increasing the number of trees and levels.  



 
Journal of Sustainability Research 27 of 52 

J Sustain Res. 2026;8(1):e260010. https://doi.org/10.20900/jsr20260010 

 

Figure 5. Relation between predicted and calculated strength using (GB). 

CN2 Model 

Similarly, five (CN2) models were developed considering “Laplace 
accuracy” as evaluation measurement with beam width of 1.0and 
minimum rule coverage of 1.0. The maximum rule length was started by 
2.0 and increased up to 10. Figure 6 shows the reduction in Error % with 
increasing the rule length. Accordingly, rule length of 10.0 is considered. 
The developed models contains247 “IF condition” rules, Figure.7 presents 
some of these rules. Performance metrics of the developed model for both 
training and validation dataset are listed in Table 2. The average achieved 
accuracy was (90%) and R2 is 0.935. The relations between calculated and 
predicted values are shown in Figure 8. Analyzing the CN2 rule induction 
algorithm for predicting the axial capacity of short concrete columns of 
different shapes wrapped with FRP sheets involves evaluating its design 
and practical implications, especially considering its average achieved 
accuracy (90%) and R² (0.935). The CN2 algorithm is a rule-based learning 
method that generates interpretable rules for classification or regression 
problems. Its use indicates a focus on interpretability and simplicity in 
capturing relationships between input features and axial capacity. Rule-
based models are advantageous for understanding the impact of specific 
variables or conditions (e.g., column shape, FRP thickness, concrete 
strength) on outcomes. The success of the model depends on the 
representativeness and quality of the features in the dataset. Accuracy 
(90%) indicates reliable predictions but slightly lower than the GB model's 
92%. This may be due to the CN2 model's simpler structure, which could 
overlook some complex interactions. R² (0.935) suggests the model 
captures a significant portion of the variance in axial capacity, making it a 
robust choice for practical use. One of the key advantages of the CN2 model 
is its interpretability. Engineers can easily understand the generated rules, 
making the model highly transparent and suitable for decision-making. A 
rule might state that "If column shape is circular and FRP thickness > 2 mm, 
then axial capacity increases by X%," which is directly actionable. The 90% 
accuracy suggests the model provides reliable predictions but may not be 
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as precise as more complex models (e.g., GB). This could result in slightly 
conservative or less reliable predictions in edge cases. The R² value (0.935) 
shows strong correlation, but real-world deviations (e.g., material 
inconsistencies or unmodeled factors) might reduce reliability. Rule-based 
models can struggle with generalization if training data is limited or not 
comprehensive. Field conditions that deviate from the training dataset 
(e.g., unique column shapes or non-standard FRP properties) could lead to 
errors. The CN2 model's reliance on specific rules makes it sensitive to 
noise or inaccuracies in input data. Field application requires high-quality 
and consistent data collection. The simplicity of CN2 rules might limit the 
model's ability to capture highly complex, non-linear interactions between 
variables, especially for diverse shapes or configurations. Validate the 
model using field data across various column shapes, sizes, and FRP 
configurations to ensure it performs reliably in diverse scenarios. Apply 
safety margins to the model's predictions to account for uncertainties in 
field conditions and data input. Update the model regularly with new data 
to improve rule coverage and generalization for diverse applications. 
Align the model's rules with design codes and standards to ensure 
compliance and facilitate adoption by practitioners. Use the model as a 
supplementary tool alongside other methods (e.g., empirical equations, 
finite element models) rather than a standalone solution, particularly for 
high-stakes designs. The CN2 model offers greater interpretability but may 
underperform compared to the GB model in terms of accuracy and 
capturing complex interactions. Its rule-based nature makes it more 
intuitive for practitioners but potentially less robust for highly complex or 
novel scenarios. The CN2 model, with a 90% accuracy and R² of 0.935, is a 
reliable, interpretable tool for predicting the axial capacity of short FRP-
wrapped concrete columns. Its design emphasizes simplicity and 
transparency, making it a good choice for scenarios where interpretability 
is essential. However, its practical application requires careful validation, 
alignment with safety standards, and supplementary use alongside other 
methods to ensure robustness in diverse field conditions. 

 

Figure 6. Reduction in Error % with increasing the rule length. 
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Figure 7. Sample of the developed CN2 “If condition”. 

 

Figure 8. Relation between predicted and calculated strength using (CN2). 

NB Model 

Traditional Naive Bayes classifier technique considering the concept of 
“Maximum likelihood” was used to develop the nine models. Although this 
type of classifier is highly scalable and are used in many applications, but 
it showed a very low performance as shown in Table 2. The relations 
between calculated and predicted values are shown in Figure 9. The 
achieved average accuracy was12% and R2 is 0.395. The performance of 
the Naive Bayes (NB) model for predicting the axial capacity of short FRP-
wrapped concrete columns, with an average accuracy of 12% and R² of 
0.395, is significantly subpar. Naive Bayes is typically used for 
classification problems and assumes strong independence between input 
features. Its application to this regression problem suggests an 
inappropriate choice of model architecture or a misalignment with the 
nature of the data. The independence assumption likely fails in this case, 
as features such as column shape, FRP thickness, and concrete strength are 
interdependent. Typical features (e.g., geometry, material properties, and 
FRP characteristics) are likely correlated, violating the NB assumption of 
feature independence. NB's reliance on probability distributions may lead 
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to oversimplified predictions in a complex, nonlinear domain like axial 
capacity. Accuracy (12%): The model provides predictions that are only 
marginally better than random guesses, highlighting significant issues 
with its suitability for the task. R² (0.395) indicates that the model explains 
less than half of the variance in the axial capacity, which is inadequate for 
reliable predictions. With only 12% accuracy, the NB model is not reliable 
for predicting axial capacity. Its predictions may lead to unsafe or overly 
conservative designs. Users unfamiliar with the model’s limitations might 
incorrectly trust its outputs, leading to flawed engineering decisions. Axial 
capacity prediction involves nonlinear relationships and interactions 
among variables, which NB cannot effectively model due to its 
independence assumption. The low R² suggests poor generalization to 
unseen data. This makes the model unsuitable for field conditions, where 
variability is high and the data may deviate significantly from the training 
set. While NB models are simple and interpretable in classification tasks, 
their application in regression provides little insight into feature 
contributions, especially when predictions are inaccurate. NB is 
inherently unsuitable for this regression problem due to its simplistic 
assumptions. A model better suited to nonlinear, interactive relationships 
such as Gradient Boosting, Random Forests, or even Neural Networks 
should be employed. Conduct a detailed analysis of feature dependencies 
and relationships. Use models that can capture and leverage these 
interactions. Ensure data preprocessing and feature engineering address 
issues such as multicollinearity and represent all relevant structural 
behaviors. Models like Gradient Boosting (GB) or Support Vector Machines 
(SVM) with appropriate kernels could handle the complex interactions 
between input variables more effectively. Using a model with such poor 
performance in structural design could result in unsafe structures if actual 
axial capacities are significantly overestimated or underestimated. 
Deploying a model with such low accuracy might undermine confidence 
in computational tools among practitioners. Time and resources spent on 
refining or validating an inappropriate model could be better directed 
toward exploring more suitable alternatives. The Naive Bayes model is 
highly unsuitable for predicting the axial capacity of FRP-wrapped 
concrete columns due to its low accuracy (12%) and R² (0.395). Its poor 
performance highlights a fundamental mismatch between the model's 
assumptions and the complexity of the problem. Abandoning NB for more 
sophisticated regression techniques is essential for producing reliable, 
actionable predictions in this domain. 
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Figure 9. Relation between predicted and calculated strength using (NB).  

SVM Model  

The developed (SVM) model was based on “polynomial” kernel with 
cost value of 100, regression loss of 0.10 and numerical tolerance of 1.0. 
The kernel started with one-degree polynomial (linear) and increased up 
to four-degree polynomial (quartic). The reduction in the error % with 
increasing the polynomial degree is illustrated in Figure 10. Accordingly, 
(quartic) kernel is considered. Performance metrics of the three developed 
models for both training and validation dataset are listed in Table 2. The 
average achieved accuracy was 90% and R2 is 0.925. The relations between 
calculated and predicted values are shown in Figure 11. The Support 
Vector Machine (SVM) model, achieving an average accuracy of 90% and 
an R² of 0.925, demonstrates strong predictive capability for the axial 
capacity of short concrete columns wrapped with FRP sheets. SVM is a 
powerful algorithm for regression problems (SVR), especially for 
capturing non-linear relationships. It relies on mapping input data to a 
high-dimensional feature space using kernels (e.g., radial basis function 
(RBF), polynomial). The choice of SVM indicates the problem's complexity 
and the need for a flexible model that handles intricate relationships 
between features (e.g., column shape, material properties, and FRP 
characteristics). Accuracy (90%) indicates the model performs well across 
the dataset, reliably predicting axial capacity. R² (0.925) suggests the model 
explains most of the variance in the data, making it suitable for capturing 
essential patterns. Success with SVM depends heavily on the kernel type 
and hyperparameters (e.g., regularization parameter C, kernel coefficient 
γ). The high performance suggests effective tuning, potentially via cross-
validation. SVM models work best with a moderate-sized dataset, as 
training time and memory requirements can increase with larger datasets. 
A well-curated dataset likely underpins the model's success. With 90% 
accuracy and an R² of 0.925, the SVM model is reliable for most design 
scenarios, providing accurate predictions of axial capacity. These metrics 
ensure confidence in the model for routine field use, particularly in well-
defined conditions that match the training data. The non-linear 
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capabilities of SVM allow it to model the effects of variables like column 
geometry, FRP wrapping, and material properties effectively. For example, 
the model can predict how a circular column responds to increased FRP 
thickness differently from a rectangular column. SVM models generalize 
well to unseen data when properly trained, but care must be taken to 
ensure that the training dataset covers the range of field conditions (e.g., 
column shapes, material properties, and boundary conditions). SVM can 
be sensitive to noisy or imbalanced datasets. Inaccurate field data, such as 
variability in material properties or incomplete measurements, could 
reduce prediction reliability. While training SVMs can be computationally 
intensive, especially with large datasets, prediction in field applications is 
typically fast, making SVM practical for real-time use. Validate the model 
across a wide range of field scenarios, ensuring it performs well for 
different column shapes, FRP configurations, and material properties. 
Data quality ensure accurate measurement of input parameters (e.g., FRP 
properties, column geometry) to maintain prediction reliability. 
Incorporate safety margins into the model’s predictions to account for 
potential variability or unseen conditions in the field. Develop user-
friendly interfaces or software that integrate the SVM model, allowing 
engineers to input parameters and receive predictions easily. Retrain and 
fine-tune the model periodically with updated datasets from field tests and 
experiments to ensure robustness. Unlike rule-based models like CN2, SVM 
lacks straightforward interpretability. Engineers must rely on the model’s 
outputs without detailed insights into the exact relationships between 
inputs and outputs. While SVM performs slightly worse than Gradient 
Boosting (GB) in terms of R² (0.925 vs. 0.96), it offers a robust alternative 
with comparable accuracy and is likely less prone to overfitting with 
proper tuning. Compared to simpler models (e.g., Naive Bayes), SVM is far 
more effective for this complex, non-linear problem. The SVM model, with 
90% accuracy and R² of 0.925, is a strong candidate for predicting the axial 
capacity of FRP-wrapped concrete columns. Its ability to model non-linear 
relationships makes it well-suited for this application, provided that the 
training data is representative of field conditions. To maximize its utility, 
engineers should ensure data quality, validate the model across diverse 
scenarios, and integrate it with practical design tools. However, its limited 
interpretability should be mitigated by incorporating safety factors and 
supplementary analyses. 
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Figure 10. Reduction in Error % with increasing the polynomial degree. 

 

 

Figure 11. Relation between predicted and calculated strength using (SVM).  

SGD Model 

These three models were developed considering modified Huber 
classification function and “Elastic net” re-generalization technique with 
mixing factor of 0.01 and strength factor of 0.001. The learning rate starts 
with 0.01, then gradually decreased to 0.001. The reduction in error% with 
reducing the learning rate is presented in Figure 12. Performance metrics 
of the three developed models for both training and validation dataset are 
listed in Table 2. The average achieved accuracy was69% and R2 is 0.49. 
The relations between calculated and predicted values are shown in 
Figure 13. The Stochastic Gradient Boosting (SGB) model, achieving an 
average accuracy of 69% and an R² of 0.49, exhibits moderate performance 
in predicting the axial capacity of FRP-wrapped short concrete columns. 
Stochastic Gradient Boosting combines Gradient Boosting with 
randomization, introducing subsampling to improve generalization and 
reduce overfitting. However, its effectiveness heavily depends on proper 
parameter tuning and quality of the training data. The suboptimal 
performance (accuracy 69% and R² 0.49) indicates possible issues such as 
insufficient or non-representative training data, poorly tuned 
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hyperparameters (e.g., learning rate, number of estimators, max depth), 
and high noise in the dataset or a lack of critical features. SGB typically 
performs well with a variety of features and can model non-linear 
interactions. The moderate performance suggests either the model 
struggled to capture complex dependencies or the features did not 
adequately describe the problem. Accuracy (69%), while better than 
random guessing, it indicates the model's predictions often deviate 
significantly from actual values. R² (0.49) suggests the model explains less 
than half of the variance in the axial capacity, making it unreliable for 
accurate predictions in diverse scenarios. With 69% accuracy and an R² of 
0.49, the SGB model lacks sufficient precision for high-stakes structural 
engineering decisions. Its predictions may lead to unsafe designs if axial 
capacities are overestimated or to inefficiencies if they are 
underestimated. The low R² indicates poor generalization. In real-world 
field conditions, where input variables can vary widely, the model’s 
predictions may deviate significantly from actual behavior. The model 
may be sensitive to noisy or imbalanced datasets. Inconsistent or 
incomplete input data (e.g., variations in material properties or column 
geometry) can exacerbate prediction errors. The moderate performance 
suggests either underfitting, where the model is too simple to capture 
relationships, or overfitting, where the model learns noise in the training 
data but fails to generalize to new data. SGB models are computationally 
more complex than simpler algorithms like linear regression or Naive 
Bayes. The modest performance does not justify the additional complexity 
in this case. Improve the dataset by ensuring it covers a wide range of 
column shapes, sizes, FRP configurations, and material properties. 
Perform feature engineering to include critical factors that may influence 
axial capacity, such as boundary conditions and environmental effects. 
Optimize SGB parameters (e.g., learning rate, subsample ratio, number of 
estimators) using techniques like grid search or random search combined 
with cross-validation. Investigate feature importance to identify variables 
that contribute most to the predictions and ensure the dataset adequately 
captures their effects. Consider using other models like Gradient Boosting 
(GB), Random Forests, or Neural Networks, which might better capture the 
complexity of the problem. Explore ensemble methods or hybrid models 
that combine the strengths of SGB with other algorithms to improve 
predictive accuracy and generalization. Given its moderate accuracy, the 
SGB model should only be used as a supplementary tool alongside 
traditional design methods or other predictive models with higher 
accuracy. Introduce conservative safety factors to account for the model’s 
limited reliability and variability in predictions. Validate the model on 
field data before use in practical applications, ensuring its predictions 
align with observed behavior for specific cases. Engineers using the model 
must be aware of its limitations and avoid over-reliance on its predictions 
for critical design decisions. The SGB model underperforms compared to 
other models like SVM or Gradient Boosting (GB), which often achieve R² 



 
Journal of Sustainability Research 35 of 52 

J Sustain Res. 2026;8(1):e260010. https://doi.org/10.20900/jsr20260010 

values above 0.9 for similar problems. The additional computational effort 
involved in training and deploying an SGB model does not yield sufficient 
accuracy to justify its use over simpler or more advanced algorithms. The 
SGB model, with a 69% accuracy and R² of 0.49, is moderately effective but 
not sufficiently reliable for predicting the axial capacity of FRP-wrapped 
concrete columns. Its performance suggests issues with data quality, 
feature representation, or model tuning. To improve its applicability, 
efforts should focus on better data curation, parameter optimization, and 
potentially exploring alternative or complementary models. For field 
applications, the SGB model should only play a supplementary role, with 
conservative safety margins and validation against empirical or 
experimental data. 

 

Figure 12. Reduction in Error % with reducing the learning rate.  

 

Figure 13. Relation between predicted and calculated strength using (SGD).  

KNN Model 

Considering number of neighbors of 1.0, Euclidian metric method and 
weights were evaluated by distances, the developed (KNN) models showed 
the best accuracy. (KNN) model showed the best performance where the 
average error% was92% and R2 is 0.96. The relations between calculated 
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and predicted values are shown in Figure 14. The k-Nearest Neighbors 
(kNN) model, achieving an R² of 0.96 but producing an average error of 
92%, presents an unusual performance pattern that warrants closer 
examination. kNN is a non-parametric, instance-based learning algorithm 
that predicts outcomes based on the similarity of input features to its 
nearest neighbors in the training dataset. Its high R² suggests it captures a 
strong correlation between features (e.g., column shape, FRP properties, 
and concrete strength) and the axial capacity. However, the extremely 
high error indicates significant issues in implementation, scaling, or the 
data's suitability for kNN. R² (0.96): Indicates the model accounts for 96% 
of the variance in the data, which should theoretically make it a strong 
predictor. Average Error (92%), highlights an inconsistency; despite high 
R², the absolute prediction accuracy is extremely poor. kNN can be 
computationally expensive for large datasets since it requires storing the 
entire dataset and computing distances for every prediction. This may 
hinder its practicality for large-scale applications. The high error 
percentage makes the kNN model unreliable for practical use despite its 
strong R². Engineers cannot depend on it to provide consistent or accurate 
axial capacity predictions in field conditions. kNN heavily relies on the 
quality, representativeness, and density of training data. Any gaps or 
biases in the data can significantly skew predictions. kNN is sensitive to 
the scale of input features. If features such as column dimensions, FRP 
thickness, or concrete strength are not normalized, the model may assign 
disproportionate importance to certain variables, leading to errors. kNN’s 
predictions are based on local similarities. In the case of sparse or 
unevenly distributed training data, the model may fail to generalize to 
unseen field conditions. Combine kNN with other algorithms (e.g., 
ensemble methods) to leverage its strengths while compensating for its 
weaknesses. The combination of high R² and extremely high average error 
makes the kNN model unreliable for field use in its current form. Rigorous 
testing against experimental or field data is essential to validate the 
model’s utility. The kNN model could serve as a supplementary tool for 
specific datasets or scenarios where high-quality, dense training data are 
available. kNN has the potential to model non-linear relationships without 
assuming a functional form, making it flexible for complex problems. 
Compared to models like Gradient Boosting or SVM, kNN is highly sensitive 
to data issues, scaling, and computational efficiency. Its high error 
undermines its utility despite the strong R². The kNN model, despite an 
impressive R² of 0.96, is fundamentally flawed for predicting the axial 
capacity of short FRP-wrapped concrete columns due to its average error 
of 92%. This inconsistency likely stems from issues such as poor feature 
scaling, inappropriate parameter choices, or data quality problems. While 
the model shows potential, it requires significant adjustments and 
rigorous validation before it can be considered for field applications. As it 
stands, it is unsuitable for reliable design or decision-making in structural 
engineering contexts. 
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Figure 14. Relation between predicted and calculated strength using (KNN).  

Tree Model 

These five models were developed considering minimum number of 
instants in leaves of 2.0 and minimum split subset of 5.0. The models began 
with only one tree level and gradually increased to 9.0 levels. Figure 15 
illustrates the reduction in Error % with increasing the number of layers. 
The layouts of the generated modelsare presented in Figure 16. 
Performance metrics of the last developed model for both training and 
validation dataset are listed in Table 2. The achieved accuracy was92% and 
R2 of 0.955. The relations between calculated and predicted values are 
shown in Figure 17. The Decision Tree (Tree) model, achieving 92% 
accuracy and an R² of 0.955, demonstrates strong predictive performance 
for estimating the axial capacity of short concrete columns wrapped with 
FRP sheets. A Decision Tree is an interpretable machine learning 
algorithm that uses a tree-like structure to model decision rules based on 
feature values (e.g., column shape, FRP thickness, material properties). Its 
high performance suggests effective partitioning of the input space and 
strong alignment between the training data and the problem's underlying 
relationships. Accuracy (92%) indicates the model reliably predicts axial 
capacity for most cases. R² (0.955) suggests the model explains 95.5% of the 
variance in the dataset, highlighting its capability to capture the 
complexity of the problem. The decision rules and thresholds are easy to 
understand, making the model transparent for engineering applications. 
Decision Trees naturally provide insights into the importance of input 
variables, allowing identification of the most critical factors influencing 
axial capacity. Trees handle non-linear relationships well, which is 
essential for modeling interactions between variables such as column 
geometry, FRP properties, and loading conditions. With high accuracy and 
R², the Tree model is a reliable tool for estimating the axial capacity of 
short FRP-wrapped concrete columns under controlled conditions. The 
interpretability of the model makes it accessible to engineers who may not 
have expertise in machine learning. It can serve as a decision-support tool 
to quickly estimate axial capacities without requiring advanced 
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computation. The high R² indicates strong generalization across the 
dataset, but care must be taken to ensure the training data includes all 
relevant field scenarios (e.g., different column shapes and FRP 
configurations). The model's ability to identify critical variables can guide 
engineers to focus on key design parameters, such as the effect of FRP 
thickness or the influence of column cross-sectional shape. Decision Trees 
excel at providing discrete predictions for specific cases, such as axial 
capacity variations based on FRP layer count or different concrete grades. 
For broader applicability, consider using an ensemble of trees (e.g., 
Random Forest or Gradient Boosting) to improve robustness and reduce 
the potential for overfitting. The model's insights can help optimize the use 
of FRP materials, balancing strength and cost. Its interpretable nature 
enables use as a decision-support tool in design reviews, allowing 
engineers to assess the impact of different design choices quickly. With 
minimal computational requirements for predictions, the Tree model is 
well-suited for real-time or on-site estimations of axial capacity. Compared 
to more complex models like SVM or Neural Networks, the Tree model 
offers superior interpretability while maintaining comparable predictive 
performance (R² of 0.955 vs. typical R² > 0.9 for other high-performing 
models). Outperforms simple models like Naive Bayes or poorly tuned 
algorithms in both accuracy and usability. The Tree model, achieving 92% 
accuracy and R² of 0.955, is a strong candidate for predicting the axial 
capacity of short FRP-wrapped concrete columns. Its high reliability, 
interpretability, and ease of use make it well-suited for both design 
optimization and on-site applications. However, careful validation, data 
quality assurance, and the inclusion of safety factors are essential to 
ensure its effectiveness in diverse field conditions. For even greater 
robustness, ensemble methods based on Decision Trees could be explored 
as an enhancement to the model. 

 

Figure 15. Reduction in Error % with increasing the No. of layers.  
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Figure 16. The layout of the developed (Tree).  

 

Figure 17. Relation between predicted and calculated strength using (Tree). 

RF Model 

Finally, nine (RF) models were generated. The models began with only 
three trees and two level and increased up to nine trees and four levels. 
Figure 18 shows the reduction in Error % with increasing number of Tress 
and layers. Accordingly, the models with nine trees and four layers are 
considered. The developed modelsare graphically presented using 
Pythagorean Forest in Figure 19. These arrangements leaded to a good 
average accuracy of 88% and R2 of 0.91. The relations between calculated 
and predicted values are shown in Figure 20. The Random Forest (RF) 
model, achieving an average accuracy of 88% and an R² of 0.91, 
demonstrates solid predictive capabilities for estimating the axial capacity 
of short concrete columns wrapped with FRP sheets. Below is an analysis 
of its design and implications for field applications. RF is an ensemble 
learning method that builds multiple Decision Trees and aggregates their 
predictions, improving accuracy and robustness compared to a single tree. 
The model's high performance (88% accuracy, R² of 0.91) reflects its ability 
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to model complex, non-linear relationships between input features (e.g., 
column shape, FRP thickness, and material properties) and axial capacity. 
Accuracy (88%) indicates reliable predictions for most cases but leaves 
some room for improvement. R² (0.91) suggests the model explains 91% of 
the variance, which is strong but slightly lower than some other advanced 
models. RF reduces overfitting by averaging predictions across multiple 
trees. RF provides insights into which input variables (e.g., FRP 
configuration or concrete strength) contribute most to predictions. RF 
works well with both numerical and categorical data and captures non-
linear interactions effectively. While more interpretable than Neural 
Networks, RF models are less intuitive than single Decision Trees. RF 
requires more computational resources for training and prediction 
compared to simpler models, which might limit its scalability for very 
large datasets. With 88% accuracy and R² of 0.91, the RF model is a reliable 
tool for predicting axial capacity in typical scenarios. However, it may 
struggle with edge cases or highly unconventional column designs. The 
ensemble nature of RF ensures stable predictions across diverse 
conditions, making it suitable for varying column geometries and FRP 
configurations. RF's ability to generalize well reduces the risk of 
overfitting, ensuring reliable predictions in field conditions even with 
moderate variations in input data. Feature importance rankings from RF 
can help engineers identify and prioritize the most influential factors 
affecting axial capacity, aiding in both design and material selection. For 
large-scale applications, optimize the computational pipeline by limiting 
the number of trees or parallelizing training. Embed the RF model into 
user-friendly software or decision-support tools to facilitate its application 
by engineers without specialized knowledge in machine learning. The RF 
model can help optimize column designs by evaluating how different 
parameters (e.g., FRP layers, column shapes) influence axial capacity. RF 
predictions can complement traditional methods, providing quick and 
reliable capacity estimates for preliminary designs or comparative studies. 
With suitable computational tools, the RF model can be used for real-time 
predictions on-site, aiding in quick decision-making during construction 
or retrofitting. By identifying the most critical design variables, RF can 
help minimize overdesign and material waste, reducing overall costs. RF 
strikes a good balance between accuracy and interpretability, 
outperforming simpler models like kNN or Naive Bayes while being easier 
to understand than Neural Networks. Its robustness makes it more reliable 
than single Decision Trees or models prone to overfitting. RF's 
performance (88% accuracy, R² of 0.91) is slightly lower than other 
advanced models like Gradient Boosting or Support Vector Machines, 
which can achieve R² values exceeding 0.95. Computational complexity is 
higher compared to simpler models, making it less ideal for extremely 
large datasets or real-time applications without optimization. The Random 
Forest model, with 88% accuracy and an R² of 0.91, is a robust and reliable 
tool for predicting the axial capacity of short concrete columns wrapped 
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with FRP sheets. Its ensemble approach ensures consistent and 
generalizable predictions, making it suitable for a wide range of design 
and field applications. However, there is room for improvement in 
accuracy, and validation on diverse datasets is essential to ensure field 
reliability. RF’s balance of performance and interpretability makes it a 
strong candidate for integration into engineering workflows, particularly 
in scenarios where computational resources and data quality are well-
managed. The Taylor diagram has been presented in Figure 21 for 
comparing the accuracies of the developed models for (Fco/Fcc).  

 

Figure 18. Reduction in Error % with increasing the No. of Tress and layers. 

 

Figure 19. Pythagorean Forest diagram for the developed (RF) models.  
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Figure 20. Relation between predicted and calculated strength using (RF).  

Comparatively, Table 2 shows the summary of the performance 
evaluation of the models. The performance of the developed models for 
predicting compressive strength (Fc) was evaluated based on statistical 
error metrics and accuracy. The GB, Tree, and KNN models exhibited the 
best performance, achieving high accuracy rates above 90% and low error 
values. GB and Tree models both attained 90% accuracy in training and 93% 
in validation, with root mean square errors (RMSE) of 0.162 MPa and 0.106 
MPa, respectively, indicating strong predictive reliability. KNN followed 
closely with 91% accuracy in training and 92% in validation, maintaining 
low mean absolute error (MAE) and mean squared error (MSE) values. The 
CN2 and SVM models demonstrated slightly lower accuracy at 87% during 
training but improved to 93% in validation, suggesting robust 
generalization capability. The RF model performed well with an accuracy 
of 86% in training and 89% in validation but had higher RMSE values 
compared to the top-performing models. In contrast, the NB and SGD 
models yielded the weakest results. NB exhibited poor predictive 
performance with 44% accuracy in training and 33% in validation, 
accompanied by significantly high error metrics, such as an RMSE of 0.923 
MPa in training and 1.086 MPa in validation. SGD, although performing 
better than NB, showed only moderate prediction accuracy with 68% in 
training and 71% in validation, along with relatively high RMSE values of 
0.535 MPa and 0.474 MPa, respectively. Overall, the GB, Tree, and KNN 
models proved to be the most effective, followed by CN2, SVM, and RF, 
which displayed strong but slightly lower performance. Meanwhile, the 
NB and SGD models failed to provide reliable predictions due to their high 
error margins and lower R² values. 

Conversely, the present study's predictive models for estimating the 
axial compressive strength of FRP-wrapped concrete columns 
demonstrated strong accuracy, particularly with models such as GB, Tree, 
KNN, and SVM, which achieved validation accuracy above 90%. These 
results align with findings from previous studies, where machine learning 
and artificial intelligence approaches have been widely used to enhance 
prediction accuracy. Berradia et al. [10] employed artificial neural 
networks (ANNs) and standard regression analysis to model the axial 
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loading capacity of circular concrete columns wrapped with CFRP. Their 
optimized ANN model showed superior accuracy compared to theoretical 
models, which is consistent with the high accuracy achieved by the present 
study's top-performing models such as GB, Tree, and KNN. Similarly, Ma et 
al. [11] applied the XGBoost algorithm to predict the axial capacity of CFRP-
confined CFST columns, achieving an R² of 0.9719, which is comparable to 
the present study's best-performing models, where R² values exceeded 
0.94. The use of ensemble learning in Ma et al.'s research reinforces the 
effectiveness of boosting techniques, as observed in the present study 
where GB performed exceptionally well. Onyelowe et al. [5] explored AI-
based predictions of confined concrete strength using genetic 
programming, ANN, and evolutionary polynomial regression. Their 
findings highlighted the significant influence of confinement stress and 
fiber tensile strength, aligning with the sensitivity analysis of the current 
study, which identified confining stress and stiffness as the most 
influential factors. Prakash and Nguyen [12] integrated Extreme Gradient 
Boosting (XGB) with metaheuristic algorithms, ensuring high 
generalizability over Monte Carlo runs, while the present study 
demonstrated similarly strong generalization with its machine learning 
models, particularly GB and Tree. Xue et al. [13] employed machine 
learning models to predict lateral confinement coefficients, where genetic 
programming (GP) outperformed other techniques due to its precision and 
reduced error. This result resonates with the current study, where RSM 
provided a closed-form equation, enhancing practical applicability. 
Nematzadeh et al. [14] examined the eccentric compressive behavior of 
CFRP-strengthened concrete columns, concluding that CFRP improved 
strength and ductility. While their study developed an analytical model, 
the present study’s ML models also demonstrated high predictive 
performance, particularly in capturing the effects of confinement and 
stiffness. Baili et al. [15] investigated the structural behavior of glass-FRP 
reinforced concrete columns and developed an ANN model with a 
theoretical equation. Their findings, with minimal discrepancies from test 
results, align with the high prediction accuracy of the present study’s 
models. Similarly, Ilyas et al. [16] introduced a gene expression 
programming (GEP) model validated against an extensive dataset. While 
GEP provided a simpler mathematical relationship, the present study’s 
RSM model also offered a practical closed-form equation. Finally, Sayed et 
al. [7] reviewed machine learning models for FRP-confined concrete 
columns, emphasizing the effectiveness of gradient boosting and random 
forest, which corresponds with the strong performance of GB and RF in 
the present study. Overall, the present study’s machine learning models 
achieved accuracy levels comparable to or exceeding those reported in 
prior literature [20–25]. The superior performance of GB, Tree, and KNN 
in this study aligns with the success of ensemble learning techniques and 
artificial neural networks in previous research, confirming the robustness 
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and reliability of machine learning for predicting the compressive 
strength of FRP-wrapped concrete columns. 

(a) 

 

(b) 

 

Figure 21. Comparing the accuracies of the developed models for (Fco/Fcc) using Taylor charts, (a) Training 
dataset, (b) Validation dataset.  

RSM Models 

The fit summary calculation was prematurely concluded based on 
settings in the Transform tab, where the maximum model order for 
process factors was limited to quadratic. The model selected on the model 
tab may either match the design model or be of a lower order. The model 
F-value of 101.97 indicates that the model is significant, with only a 0.01% 
chance of such a high F-value arising from noise (see Tables 3 and 4). P-
values below 0.0500 identify significant model terms, which in this case 
include B, C, D, E, AD, BC, BD, BE, CD, CE, DE, A², B², C², D², and E². 
Conversely, P-values exceeding 0.1000 suggest insignificant terms. 
Reducing the model by removing insignificant terms (while maintaining 
hierarchical integrity) may enhance its performance. The Lack of Fit F-
value of 3.35 suggests that the Lack of Fit is significant, with a 0.01% 
probability of such a result arising from noise. The predicted R² of 0.9717 
aligns reasonably well with the adjusted R² of 0.9009, as the difference is 
below 0.2. Adequate precision, which measures the signal-to-noise ratio, 
has a desirable value above 4. Here, the ratio is 79.693, indicating a strong 
signal. Figures 22–24 have presented the model graphs for the residuals 
and residuals versus predicted values of the axial capacity of short 
concrete columns of different shapes wrapped with FRP sheets, Cook’s 
distance and Box-Cox plot for power transform of the axial capacity of 
short concrete columns of different shapes wrapped with FRP sheets 
model, and the 3D optimized axial capacity of short concrete columns of 
different shapes wrapped with FRP sheets with the two most impactful 
parameters and the desirability of the optimized model with respect to the 
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variables. This model is suitable for navigating the design space. The 
equation (Equation (11)), expressed in terms of actual factor levels, can be 
used to predict responses for specified factor levels in their original units. 
However, it should not be used to assess the relative influence of each 
factor, as the coefficients are scaled to reflect the units of the factors, and 
the intercept is not located at the center of the design space. 

Table 3. Fit summary response for Fcc/Fco.  

Source Sequential p-value Lack of Fit p-value Adjusted R² Predicted R²  

Linear < 0.0001 < 0.0001 0.6827 0.6757  

2FI < 0.0001 < 0.0001 0.7675 0.7571  

Quadratic < 0.0001 < 0.0001 0.9009 0.9717 Suggested 

Table 4. Fit statistics.  

Std. Dev. 0.2834 R² 0.9088 

Mean 1.65 Adjusted R² 0.9009 

C.V. % 17.14 Predicted R² 0.9717 
  Adeq Precision 79.6929 

 

Fcc/Fco = 3.05509 -0.780868b/b0 -2.83775d/b +5.51759r/b -7.93540Stiff +3.89712Conf -0.204645b/bo * d/b 

+0.385846b/bo * r/b +3.80636 b/bo * Stiff -0.830761b/bo * Conf -2.73539 d/b * r/b +2.61896 d/b * Stiff -1.64592 

d/b * Conf +2.57042 r/b * Stiff +2.91830 r/b * Conf-4.83690 Stiff * Conf+0.314142 b/bo²+1.10344 d/b²-5.11228 

r/b²+3.37251 Stiff²+0.950795 Conf² 

 

(11) 
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(a) 

 

(b) 

 

Figure 22. Plots of (a) residuals and (b) residuals versus predicted values of the axial capacity of short 
concrete columns of different shapes wrapped with FRP sheets. 

(a) 

 

(b) 

 
Figure 23. Plots of the (a) Cook’s distance and (b) Box-Cox plot for power transform ofthe axial capacity of 
short concrete columns of different shapes wrapped with FRP sheets model. 
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(a) 

 

(b) 

 

Figure 24. Plots of (a) the 3D optimized axial capacity of short concrete columns of different shapes wrapped 
with FRP sheets with the two most impactful parameters and (b) the desirability of the optimized model 
with respect to the variables.  
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CONCLUSIONS 

This research presents a comparative study between eight ML 
classification and one symbolic model techniques namely GB, CN2, NB, 
SVM, SGD, KNN, Tree, RF, and RSM to estimate the enhancement in axial 
compressive strength of short concrete column with different cross section 
shape and wrapped with FRP(Fco/Fcc)considering size effect (b/bo), aspect 
ratio (d/b), corner rounding (r/b), wrapping stress (2.t.Ffrp/b.Fco) and 
wrapping stiffness (2.t.Efpr/.b.Ec).The outcomes of this study could be 
concluded as follows: 

- (RSM, GB, CN2, SVM, KNN and Tree) models showed an excellent 
accuracy more than90%, while (RF) model showed very good 
accuracies of about (88%) and finally (NB, SGD) presented 
unacceptable accuracy (less than 70%).   

- Both of correlation matrix and sensitivity analysis indicated that 
confining stress (Conf) and stiffness (Stiff) are the most effective 
inputs, then the corner radius and finally the aspect ratio and the 
size effect. 

- All the developed models are too complicated to be used manually, 
which may be considered as the main disadvantage of the ML 
classification techniques compared with other symbolic regression 
ML techniques such as RSM, GP and EPR. RSM in this case produced 
a closed-form equation that can be applied manually.  

- The developed models are valid within the considered range of 
parameter values, beyond this range; the prediction accuracy 
should be verified. 

- For farther studies, more symbolic regression techniques may be 
implemented to develop a unified formula for the axial capacity of 
short concrete column wrapped with FRP.   

- The quantitative analysis demonstrates that the Gradient Boosting, 
Tree, and K-Nearest Neighbors models achieved the highest 
predictive performance, with validation accuracies exceeding 90% 
and low error metrics, confirming their reliability in estimating 
the axial compressive strength of FRP-wrapped concrete columns.  

- The RSM model exhibited strong statistical significance, with an F-
value of 101.97, a predicted R² of 0.9717, and an adequate precision 
ratio of 79.693, indicating a robust signal for optimizing column 
design parameters. Overall, the results confirm that machine 
learning models, particularly ensemble and non-parametric 
approaches, provide accurate and practical tools for predicting the 
compressive behavior of FRP-confined short concrete columns. 

Practical Application & Subsequent Impact of on the State of Practice 

The practical application of this research lies in enhancing the 
structural design and assessment of FRP-wrapped concrete columns, 
leading to more efficient and reliable construction practices. By leveraging 
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machine learning models to accurately predict the axial compressive 
strength of these columns, engineers can optimize material usage, reduce 
construction costs, and improve the safety and durability of infrastructure. 
In real-world scenarios, this research can be applied to retrofit and 
strengthen aging or damaged concrete structures, particularly in seismic 
zones where reinforced concrete columns need additional confinement to 
prevent catastrophic failure. The developed models can assist engineers in 
selecting the appropriate FRP wrapping thickness, stiffness, and shape 
modifications to achieve the desired load-bearing capacity. Additionally, 
the closed-form equation generated by the RSM model offers a user-
friendly approach that allows practitioners to make quick and reliable 
strength estimations without requiring complex computational tools. This 
can be particularly beneficial for structural engineers, contractors, and 
policymakers involved in infrastructure rehabilitation, bridge retrofitting, 
and high-rise building construction. Overall, the integration of these 
predictive models into structural design guidelines can contribute to the 
development of sustainable, cost-effective, and resilient concrete 
structures, ultimately improving the longevity and performance of 
modern civil engineering projects. 

The outcomes of this study have a substantial impact on the state of 
practice in structural engineering by providing reliable, data-driven tools 
for predicting the axial compressive strength of FRP-confined concrete 
columns, which can enhance both design efficiency and structural safety. 
The integration of machine learning models with sensitivity analysis 
enables engineers to identify the most critical factors influencing column 
performance, allowing for more informed decisions in material selection, 
geometry optimization, and FRP confinement strategies. Furthermore, the 
provision of a practical RSM-based closed-form equation facilitates direct 
application in design practice, reducing dependence on extensive 
experimental testing while supporting the adoption of FRP retrofitting 
solutions for both circular and rectangular columns. Overall, this research 
advances current engineering practice by combining predictive accuracy, 
computational efficiency, and interpretability, promoting safer, more cost-
effective, and resilient reinforced concrete structures. 

Recommendation for Future Research 

Future research should focus on expanding the dataset to include a 
broader range of concrete strengths, FRP types, and column geometries to 
enhance the generalizability of the developed models. Incorporating 
additional machine learning techniques, such as deep learning and hybrid 
models, could further improve prediction accuracy and robustness. 
Investigating the long-term performance of FRP-wrapped concrete 
columns under various environmental conditions, including temperature 
fluctuations, moisture exposure, and freeze-thaw cycles, would provide 
valuable insights into their durability and aging characteristics. 
Experimental validation of the models with real-world structural tests 
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would strengthen their reliability and applicability in practical 
engineering scenarios. Additionally, developing user-friendly software or 
mobile applications based on the best-performing models could facilitate 
real-time decision-making for engineers and designers. Integrating these 
predictive tools into building codes and design guidelines would ensure 
standardized and efficient implementation in construction projects. 
Further exploration of the interaction between FRP confinement and 
other strengthening techniques, such as internal steel reinforcement or 
fiber additives, could lead to more comprehensive strengthening 
strategies. Lastly, investigating the economic and environmental impacts 
of FRP wrapping in comparison to traditional reinforcement methods 
would support the advancement of sustainable construction practices. 
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