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ABSTRACT

Modeling the axial load-bearing capacity of short concrete columns
confined with fiber-reinforced polymer (FRP) sheets necessitates
consideration of several key factors, such as material properties,
geometric dimensions, and the confinement effects provided by the FRP
wrapping. These considerations are vital for the design of more durable
and sustainable FRP-confined concrete structures. This research presents
a comparative evaluation of eight machine learning (ML) classification
algorithms and one symbolic regression method aimed at predicting the
enhancement in axial compressive strength (Fco/Fcc) of FRP-wrapped
short concrete columns with different cross-sectional shapes. The study
accounts for variables including size effect (b/bo), aspect ratio (d/b), corner
rounding (r/b), wrapping stress (2-t-Ffrp / b-Fco), and wrapping stiffness
(2-t-Efrp / v-b-Ec). A thorough literature review yielded a dataset of 500
experimental results on FRP-confined concrete columns with a variety of
concrete strengths, cross-sectional shapes (square and circular), FRP types,
and wrap thicknesses. This dataset was divided into a training set of 400
samples (around 80%) and a validation set of 100 samples (approximately
20%). Results showed that the response surface methodology (RSM),
gradient boosting (GB), CN2, support vector machine (SVM), k-nearest
neighbor (KNN), and Tree models achieved excellent prediction accuracies
exceeding 90%, while the RF model delivered very good performance with
about 88% accuracy. In contrast, the naive bayes (NB) and stochastic
gradient descent (SGD) models underperformed, reaching accuracies
below 70%. Analysis using correlation matrices and sensitivity evaluations
revealed that confining stress and stiffness were the most significant
predictors, followed by corner radius, aspect ratio, and size effect. Notably,

] Sustain Res. 2026;8(1):e260010. https://doi.org/10.20900/jsr20260010


https://sustainability.hapres.com/

Journal of Sustainability Research

2 of 52

the RSM approach was unique in providing a closed-form equation,
making it suitable for direct application in design practice.

KEYWORDS: concrete strength; fiber wrapped columns; fiber reinforced
polymer (frp); advanced machine learning

ABBREVIATIONS

SSE, sum of squared error; MAE, mean absolute error; MSE, mean squared
error; RMSE, root mean squared error; R2, coefficient of determination;
GB, Gradient Boosting; CN2, CN2 Rule Induction; NB, Naive Bayes; SVM,
Support vector machine; SGD, Stochastic Gradient Descent; KNN, K-
Nearest Neighbors; Tree, Tree Decision; RF, Random Forest; 3D, three
dimension; CFRP, carbon fiber reinforced polymerc

INTRODUCTION

Because of its outstanding mechanical properties, the use of fiber
reinforced polymer (FRP) composites instead of traditional materials has
greatly aided in the retrofitting or strengthening of various concrete
elements [1]. FRP materials are extremely robust and corrosion-resistant,
making them ideal for use in hostile situations where traditional
reinforcing materials may decay over time [2]. Furthermore, FRP
materials are frequently derived from recycled resources and are easily
recyclable, making FRP reinforcement a long-term alternative for
increasing the performance of reinforced concrete (RC) components [3-6].
FRP confinement is a particularly cost-effective approach for increasing
the performance of existing RC elements since it eliminates the need for
additional reinforcing materials and can lower the thickness of the
concrete required.FRP confinement has been found to improve the
performance of reinforced concrete (RC) columns, increasing their
strength and ductility. This can improve safety and lessen collapse hazards
during earthquakes and natural calamities [6]. The circular design of FRP
sheets improves the concrete core's confinement efficiency, whereas
rectangular parts have lesser homogeneity. The use of FRP sheets is
determined by their properties, concrete, applied load, and cross-section
geometry, which includes the rectangularity aspect ratio (t/b), corner
radius (rc), and specimen size [7]. The motivation for researching FRP-
confined rectangular RC columns stems from its ability to accommodate a
wide range of column sizes and shapes [8]. However, predicting the
maximum axial load of FRP-confined rectangular RC columns is difficult
due to their complex and nonlinear behavior, the varying properties of
FRP materials, the complex interaction between FRP confinement and the
concrete matrix, and a lack of experimental data. Despite these challenges,
ongoing research strives to increase our understanding of FRP-confined
rectangular RC columns and create more precise models for forecasting
their maximum axial load [1]. This will lead to developments in the field,
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as well as improvements in structural design and construction. Intensive
efforts have been undertaken to develop a model capable of predicting the
compressive strength of restricted rectangular columns [9]. These
attempts employed either mathematics (design-oriented) or machine
learning models. Given the given experimental data, design-oriented
models anticipate the behavior of FRP-confined rectangular RC columns
using empirical equations and simplified assumptions. Berradia et al. [10]
improved empirical models for the axial loading capacity (ALC) of circular
normal strength concrete (NSC) columns wrapped in carbon fiber
reinforced polymer (CFRP) sheets with interior transverse steel
reinforcement (TSR) (CSC columns) by incorporating the interaction
mechanism between TSR and FRP confining behavior. The study used a
standard regression analysis technique and artificial neural networks
(NNs) to examine the experimental results of 76 CSC columns from prior
studies. The proposed NN model was optimized for different hidden layers
and neurons. The results were in close agreement with the testing
database, with a higher accuracy than the theoretical model. The
comparative study confirmed the superiority and accuracy of the
predicted strength models for CSC columns. Ma et al. [11] used Carbon
fiber reinforced polymer (CFRP) to support concrete-filled steel tubular
columns, but it's complicated interactions make strength predictions
problematic. To forecast the axial compressive capacity of CFRP-confined
CEST short columns, a new method called XGBoost is developed, which
uses an advanced machine learning algorithm. The data collection
contains 379 records that examine failure modes, stress processes, and the
impacts of CFRP layers, core concrete strength, and section shapes on axial
compressive capacity. Calculations are performed using eight methods,
including linear regression, K-nearest neighbor, support vector machine,
and ensemble learning models. XGBoost has the best prediction
performance, with an R? of 0.9719. Also, Onyelowe et al. [5] investigated
the effects of fiber-reinforced polymers on the restricted compressive
strength of wrapped concrete columns. According to the data, the Fcc
value is determined by elements such as FRP thickness, tensile strength,
elastic modulus, column diameter, and concrete's confined compressive
strength. Five Al approaches were used: genetic programming, artificial
neural networks, and evolutionary polynomial regression. The results
showed that confinement stress and Ftf have a substantial influence on
the Fcc value. The ANN model proved to be more accurate than the EPR
and GP predictive models. Other studies, Prakash and Nguyen [12]
investigated machine learning methods for predicting the maximum load
capacity (MLC) of circular reinforced concrete columns made of Fiber
Reinforced Polymer (FRP). The Extreme Gradient Boosting (XGB)
algorithm is integrated with unique metaheuristic algorithms to ensure
resilience and generalizability over 200 Monte Carlo runs. The model is
compared to eight different ML models and assessed for interpretability
using SHAP values. The study also created an interactive GUI to improve
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understanding and application of the XGB model. Xue et al. [13] used
materials and machine learning to predict the lateral confinement
coefficient (Ks) of reinforced concrete columns. The Ks values were
predicted using machine learning models such as genetic programming
(GP), minimax probability machine regression (MPMR), and deep neural
networks. GP and MPMR both performed well, but the GP model
outperformed with more precision and fewer errors. The GP model earned
more points and finished first. Nematzadeh et al. [14] investigated the
eccentric compressive behavior of steel fiber-reinforced concrete columns
strengthened with carbon fiber-reinforced polymers (CFRPs). Eighteen RC
columns with plain concrete and fiber-reinforced concrete were subjected
to eccentric compressive loading. The results showed that CFRP sheets
improved loading capacity and ductility, but steel fibers in the concrete
increased ductility. The applied load's eccentricity reduced the influence
of CFRP sheet confinement on reinforced concrete strength. An analytical
model was created to predict the behavior of fibrous concrete columns
restricted with transverse reinforcement and CFRP sheets under eccentric
compressive loads. Baili et al. [15] looked at the structural performance of
glass fiber-reinforced polymer (glass-FRP) reinforced concrete (RC)
columns versus steel rebar RC columns using steel hybrid fibers. The
researchers discovered that GFC columns had lower axial strengths and
greater ductility indices than SFC columns. The study created a new
artificial neural network model and offered a theoretical equation for
calculating GFC columns' AS. The results revealed an average discrepancy
of 3.2 and 1.9% from the test results. Ilyas et al. [16] described a new GEP
model for forecasting the compressive strength of circular CFRP-confined
concrete columns. The model, which is based on a large database of 828
data points, has been reviewed and validated using multiple methods.
Compared to other AI algorithms, GEP has a simpler mathematical
relationship and is more reliable. The model outperforms linear and
nonlinear regression models in terms of precision, efficiency, and
proximity to the target. It also meets external validation standards better
than other traditional models. Sayed et al. [7] reviewed machine-learning
techniques for estimating axial compressive load of FRP-confined concrete
columns. It discusses influential parameters and their effects on strength,
ductility, and failure mode. Data from steel reinforced rectangular
concrete columns and externally confined with different FRP composites
were used to generate machine-learning models. The models were found
to be in good agreement with test results, with gradient boosting and
random forest repressors being more accurate.

Research Significance

The significance of this research lies in its contribution to advancing
the predictive modeling of FRP-confined concrete columns, addressing the
challenges posed by their complex nonlinear behavior, varying material
properties, and diverse cross-sectional geometries. By leveraging machine
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learning approaches, including ensemble and regression-based models,
this study provides highly accurate tools for estimating axial compressive
strength, which enhances the reliability and efficiency of structural design
and retrofitting strategies. Furthermore, the research integrates extensive
experimental data with Al-driven modeling, offering practical predictive
frameworks that reduce reliance on purely empirical or theoretical
equations, improve interpretability, and support informed decision-
making for the design and optimization of durable and resilient FRP-
confined reinforced concrete structures.

Research Gap and Statement of Novelty

Despite considerable progress in modeling FRP-confined concrete
columns, existing studies often focus on specific column shapes, limited
datasets, or traditional empirical and analytical models that may not fully
capture the complex, nonlinear interactions between FRP materials,
concrete properties, and geometric parameters. Additionally, while
machine learning approaches have been applied, there remains a lack of
comprehensive comparative analyses of multiple Al and ensemble models
for both circular and rectangular columns, as well as limited integration
of sensitivity analysis to identify the most influential factors governing
axial compressive strength. The novelty of this research lies in its
development of a data-driven framework that combines a diverse
experimental dataset with multiple machine learning techniques,
including ensemble and regression-based models, to accurately predict the
axial compressive strength of FRP-confined short concrete columns. This
study not only demonstrates high predictive accuracy but also
incorporates sensitivity analyses and closed-form modeling via RSM,
providing both practical design tools and deeper insights into the relative
influence of key structural and material parameters, thereby bridging the
gap between experimental findings, AI modeling, and structural design
applications.

METHODOLOGY

Collected Database and Basic Analysis

An extensive literature search [4,5] produced 500 records which were
collected from literature for compressive strength for short concrete
columns with different concrete strengths, cross section shapes (square
and circular), and wrapped with different FRP types, thickness. Each
record contains the following data:b/bo: Size effect = Column width (or
diameter) / (bo=150mm), r/b: Radius of corner round / column width (=0.5
for circular columns), d/b: Aspect ratio = Column length / column width (=
1.0 for square and circular columns), Stiff: Relative stiffness of wrapping
FRP sheets (=2.t.Efpr/v.b.Ec), Conf: Relative confining stress of wrapping
sheets (=2.t.Ffrp/b.Fco), Fcc/Fco: Enhancement of axial capacity due to
wrapping (wrapped concrete strength/unwrapped concrete strength).
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Where t is Thickness of wrapped FRP, Ffrp is Tensile strength of FRP, Efrp
is Elastic modulus of FRP, Ec  is Elastic modulus of concrete, and v is
Poisson ratio of concrete. The preprocessing of the collected dataset
involved a careful review of all 500 records to identify and remove
redundant or duplicate entries, ensuring that each data point represented
a unique combination of column characteristics and FRP confinement
properties. In addition, the dataset underwent shuffling to randomize the
order of samples, which prevents any unintended sequential patterns
from influencing the training process. These preprocessing steps were
implemented to enhance the quality and performance of the machine
learning models by providing a cleaner, more representative, and
unbiased dataset for both the training and validation phases. The collected
records were divided into training set (400 records~80%) and validation
set (100 records~ 20%) [17]. The appendix includes the complete dataset,
while Table 1 summarizes their statistical characteristics. Finally, Figure 1
shows Pearson correlation matrix, histograms, and the relations between
variables. It can be observed from this figure that Stiff: Relative stiffness
of wrapping FRP sheets (=2.t.Efpr/v.b.Ec) and Conf: Relative confining
stress of wrapping sheets (=2.t.Ffrp/b.Fco) are the variables in the
preliminary analysis that show strong internal consistencies of above 0.5.

Table1l. Statistical analysis of collected database.

b/bo d/b r/b Stiff Conf Fcc/Fco
Training set
Max. 2.67 2.00 0.50 1.09 1.99 4.50
Min 0.60 1.00 0.00 0.02 0.05 0.25
Avg 1.20 1.09 0.29 0.17 0.41 1.66
SD 0.43 0.26 0.16 0.14 0.33 0.64
Var 0.35 0.24 0.56 0.83 0.81 0.39
Validation set
Max. 2.33 2.00 0.50 0.76 1.66 4.50
Min 0.63 1.00 0.03 0.03 0.05 0.50
Avg 1.19 1.10 0.29 0.17 0.42 1.62
SD 0.37 0.27 0.16 0.13 0.33 0.66
Var 0.31 0.24 0.58 0.75 0.79 0.41
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Figure 1. Correlation, Distribution and Interpreting chart.

Research Program

Eight different ML classification techniques and one symbolic model
were used to predict the axial capacity of short concrete columns of different shapes
wrapped with FRP sheets using the collected database. These techniques are
“Gradient Boosting (GB)”, “CN2 Rule Induction (CN2)”, “Naive Bayes (NB)”,
“Support vector machine (SVM), “Stochastic Gradient Descent (SGD)”, “K-
Nearest Neighbors (KNN)”, “Tree Decision (Tree)” and “Random Forest
(RF)”. The developed models were used to predict (Fco/Fcc) considering
size effect, aspect ratio, corner rounding, wrapping stress and stiffness. All
the developed models were created using “Orange Data Mining” software
version 3.36 [18-20]. The considered data flow diagram is shown in Figure
2. The following section discusses the results of each model. The
Accuracies of developed models were evaluated by comparing sum of
squared error (SSE), mean absolute error (MAE), mean squared error
(MSE), root mean squared error (RMSE), Error %, Accuracy % and
coefficient of determination (R?) between predicted and calculated axial
capacity of short concrete columns of different shapes wrapped with FRP
sheetsparameters values. The definition of each used measurement is
presented in Equations (1)-(6).
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Theory of Advanced Machine Learning Methods

Gradient boosting (GB)

Gradient Boosting (GB) is a powerful machine learning technique used
for both regression and classification tasks. It works by building an
ensemble of weak learners, typically decision trees, in a sequential
manner. Each tree corrects the errors of the previous one by focusing on
the residuals, creating a model that minimizes the overall error. Gradient
Boosting variants exist such as Optimized version of GB with faster
computation and additional features like handling missing data, LightGBM,
focused on efficiency with large datasets and high-dimensional data and
CatBoost, specializes in categorical features without requiring
preprocessing. Gradient Boosting is a versatile and highly effective
technique for predictive modeling. Its application in industries like
construction, healthcare, and finance highlights its broad utility. When
paired with domain knowledge and robust datasets, Gradient Boosting
enables innovation, efficiency, and sustainability across various fields.
The hyperparameters of the Gradient Boosting (GB) model play a central
role in determining how effectively it captures the nonlinear relationships
governing the axial load enhancement of FRP-confined concrete columns.
In this context, where confinement stiffness, confining stress, geometric
effects, and cross-sectional characteristics interact in complex ways, the
tuning and behavior of key GB hyperparameters largely explain its high
predictive accuracy. The learning rate controls the incremental
contribution of each boosting stage. A moderate to low learning rate
generally enables the model to build the prediction function gradually,
reducing the risk of overfitting while allowing the ensemble to capture
subtle nonlinearities. The strong predictive performance of GB in this
study indicates that the learning rate allowed sufficient flexibility for
modeling the combined effects of FRP stiffness, wrap stress, and geometric
variation without destabilizing the training process. The number of
estimators determines how many boosting iterations are used to refine the
model. A sufficiently large number would be necessary to represent the
layered effects of confinement behavior, especially given the
heterogeneity across circular and square columns, varying FRP
thicknesses, and different concrete strengths. The high accuracy reported
suggests that the chosen number of trees allowed the GB model to learn
these interactions comprehensively. If the number had been too low, the
model would likely have missed higher-order dependencies; too high, and
it might have begun fitting noise rather than meaningful structural
behavior. Tree-related hyperparameters such as maximum depth,
minimum samples split, and minimum samples leaf influence the
complexity of each individual tree. A balanced depth would be needed to
recognize dependencies, such as how corner rounding interacts with wrap
stress or how stiffness ratios affect strength enhancement. The achieved
accuracy above 90% reflects that the trees were deep enough to capture
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these interactions but not so deep as to compromise generalization. In
problems rooted in structural mechanics, deeper trees often help identify
threshold behaviors and interaction regions, and the GB model’s
performance suggests that such patterns were effectively learned.
Subsample ratio affects the robustness of the bhoosting process by
introducing randomness into how samples are selected for each tree. A
subsampling rate below unity reduces variance and helps avoid
overfitting, especially in datasets where experimental variability is
inherent. The successful validation accuracy of GB implies that the
subsample configuration improved stability without diluting the
predictive signal. Regularization parameters, including maximum
features and any L1 or L2 constraints when used, further shape how
aggressively the model fits the training data. Proper regularization would
have been essential in handling highly correlated predictors such as
confining stress and stiffness, allowing the model to emphasize their
contribution without being dominated by redundancies. The strong
performance of GB relative to several other models indicates that
regularization was appropriately set to maintain generalization capability
across diverse column geometries and material combinations. Overall, the
hyperparameter configuration of the GB model appears to have provided
an effective balance between model complexity and stability. This balance
enabled the algorithm to capture the nonlinear confinement mechanics
that govern the axial load enhancement of FRP-wrapped concrete columns
while maintaining strong generalization across the validation dataset.

CN2 rule induction (CN2)

The CN2 Rule Induction algorithm is a machine learning technique
designed for classification tasks. It focuses on creating a set of
interpretable and easy-to-understand rules that describe patterns within
the data. Unlike black-box models, CN2 emphasizes transparency, making
it ideal for domains where interpretability is critical, such as healthcare,
law, and engineering. The algorithm searches for rules that distinguish
between classes in the dataset. A rule takes the form:

IF (conditions) THEN (class prediction). CN2 uses a beam search
strategy to explore the space of potential rules. This balances
computational efficiency and the quality of discovered rules. Rules are
evaluated based on metrics like entropy, accuracy, or Laplace accuracy.
The best-performing rules are retained. Once a rule is generated, it is
applied to the dataset, and all instances covered by the rule are removed.
This process continues iteratively until all instances are classified or a
stopping criterion is met. To avoid overfitting, the algorithm prunes rules
by removing conditions that do not significantly improve performance.
The CN2 Rule Induction algorithm offers a balance between
interpretability and performance, making it a valuable tool in domains
where transparency is critical. While it may not achieve the predictive
power of complex models, its ability to generate clear, actionable insights
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ensures its continued relevance in machine learning and data-driven
decision-making. The performance of the CN2 Rule Induction model in
predicting the axial load enhancement of FRP-confined concrete columns
is closely tied to the tuning and interaction of its key hyperparameters,
which govern how rules are formed, refined, and selected. Central to CN2
is the beam width, which controls the number of candidate rule complexes
retained during the search process. A larger beam width expands the
search space, allowing the algorithm to explore more potential
combinations of predictor variables such as confinement stress, stiffness,
and geometric ratios. This can improve predictive accuracy by enabling
the discovery of more nuanced rule sets, but it also increases
computational cost and raises the risk of overfitting, especially when the
model begins to capture noise associated with less influential variables. A
narrower beam width constrains the search, promoting more generalized
rules but potentially overlooking important interactions. The significance
threshold plays an equally important role by determining whether a
candidate rule possesses sufficient statistical strength to be accepted into
the rule list. Higher significance thresholds ensure that only robust rules,
strongly associated with accurate classification of Fco/Fcc enhancement,
are included. This produces a cleaner and more reliable rule set but may
reduce model sensitivity to subtle variations caused by secondary factors
such as size and aspect ratio. Lower significance thresholds allow more
rules to enter the model, which increases granularity but may also
introduce instability and inconsistency in predictions. The minimum
coverage parameter influences how broadly applicable each rule must be
before it is considered valid. Larger coverage requirements prevent the
model from generating overly specific rules that capture only small
subsets of the data, thereby promoting generality and better performance
on unseen samples. In contrast, low coverage settings allow the algorithm
to form narrow rules that may explain rare patterns in the dataset but are
unlikely to improve overall predictive accuracy. Together with the
evaluation measure typically based on entropy, likelihood ratio, or
weighted accuracy. These hyperparameters shape the model’s learning
behavior. The evaluation measure influences how the algorithm ranks
rule candidates, with measures emphasizing information gain or
probability often steering CN2 toward rules that capture the dominant
predictors, such as confining stress and stiffness, which the sensitivity
analysis identified as decisive factors. Through the interaction of these
hyperparameters, the CN2 model balances exploration of the predictor
space with the need to avoid overfitting. Proper tuning ensures that the
resulting rule set remains interpretable while maintaining the high
accuracy observed in the study, where CN2 performed comparably to
other strong learners like gradient boosting and SVM.
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Naive bayes (NB)

The behavior of the Naive Bayes model in predicting the axial load
enhancement of FRP-confined concrete columns is shaped primarily by
how its hyperparameters manage probability estimation, handle
numerical features, and control the model’s sensitivity to data distribution.
Since Naive Bayes relies on the assumption of feature independence, its
hyperparameters influence how strictly or flexibly this assumption is
applied when estimating the likelihood of each input variable, such as
confinement stress, stiffness, cross-sectional ratios, and corner radius. For
datasets composed mostly of continuous variables, as in this study, the
Gaussian variant is commonly used, and its key hyperparameter is the
variance smoothing term. This parameter regulates the stability of the
estimated feature variances by adding a small constant to prevent division
by zero or extremely small variances that could otherwise distort
probability calculations. When variance smoothing is too small, the model
becomes overly sensitive to slight fluctuations in numerical predictors,
leading to unstable probability estimates and poor generalization. When
it is increased, the distributions become smoother and more robust, but
potentially at the cost of reduced sensitivity to meaningful distinctions
between data classes. The underperformance of Naive Bayes in this study
suggests that even with reasonable smoothing, the independence
assumption limits its ability to capture the strong interactions among
variables like confinement pressure, aspect ratio, and size effect. In
multinomial or categorical variants, which are less suited to this type of
dataset, the primary hyperparameter is alpha in Laplace or Lidstone
smoothing. This parameter prevents zero-probability issues for rarely
occurring classes or attribute levels. Although smoothing can help stabilize
predictions, it cannot compensate for the model’s inability to capture
nonlinear relationships or variable interactions essential in structural
performance prediction. When alpha is small, the model closely follows
the empirical distribution but may overfit when categories are sparse.
When alpha is larger, probability estimates become more uniform,
improving robustness but reducing fidelity to actual patterns. Given the
physics-driven nature of FRP confinement and the nonlinear interactions
among its governing variables, the simplicity of Naive Bayes limits its
predictive capability, regardless of hyperparameter adjustments. Even
optimal variance or Laplace smoothing cannot overcome the model’s
structural assumption of independent predictors. As a result, its lower
accuracy relative to models like GB, CN2, SVM, and KNN reflects both its
restricted functional form and the mismatch between its probabilistic
assumptions and the complexity of the FRP-confined concrete dataset.
Naive Bayes (NB) is a family of probabilistic classification algorithms
based on Bayes' Theorem. It assumes that features are conditionally
independent given the class label, a simplification that is often untrue in
practice but allows for efficient computation. Despite this "naive"
assumption, NB performs surprisingly well in many real-world scenarios,
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especially in text classification and other high-dimensional data
applications.
The foundation of Naive Bayes is Bayes' Theorem:

P/OPEC) -

P(C/X) = POO)

Where: P(c/x) is Posterior probability of class C given the feature vector
X, P(x/c) is Likelihood of X given the class C, p(¢) is Prior probability
of class C, and P(x) is Marginal probability of the feature vector X.NB
assumes that all features are independent:

P(X/C) = P(x;/C).P(x,/C) ... ... P(x,/C) ®)

Where:x,,x,,..... andx,, are the individual features of X.
From Equation (8), the model predicts the class CCC with the highest
posterior probability:

¢ = argmax.P(C/X) )

Naive Bayes is a simple yet powerful tool for classification, especially
in text-based and high-dimensional datasets. While it makes strong
independence assumptions, it often performs surprisingly well in
practical applications, making it a staple in the machine learning toolkit.
By balancing speed, simplicity, and effectiveness, Naive Bayes remains a
reliable choice for interpretable and fast predictive modeling.

Support vector machine (SVM)

Support Vector Machine (SVM) is a powerful supervised learning
algorithm used for both classification and regression tasks. It excels in
finding an optimal hyperplane that separates data points of different
classes in a high-dimensional space. SVM is widely recognized for its
effectiveness, especially in small or medium-sized datasets with clear class
boundaries. Support Vector Machine (SVM) is a versatile and robust
algorithm for both classification and regression tasks. It shines in high-
dimensional datasets and excels at finding the optimal boundary between
classes. While computationally intensive and sensitive to parameter
tuning, SVM remains a go-to choice for interpretable and high-performing
models in structured data analysis. The performance of the Support Vector
Machine model for predicting axial load enhancement in FRP-confined
concrete columns is governed largely by how its hyperparameters control
margin width, kernel behavior, and the model’s sensitivity to nonlinear
patterns in the predictors. Central to SVM is the regularization parameter
C, which determines the trade-off between achieving a wide separating
margin and minimizing classification errors. When C is small, the model
prioritizes a smoother decision boundary and tolerates misclassified
points, promoting generalization but potentially overlooking important
nonlinear interactions among variables such as confinement stress,
stiffness, and geometric ratios. When C is large, the model forces tighter
fitting around the training data, capturing more complex relationships but
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becoming vulnerable to overfitting, especially in datasets with noise or
overlapping classes. Equally influential is the kernel choice, which dictates
how the input space is transformed to allow linear separation of patterns
that are not linearly separable. The radial basis function (RBF) kernel is
often suitable for structural mechanics datasets because it captures
localized nonlinear interactions, while the linear kernel assumes a global
linear relationship among variables. The polynomial kernel introduces
intermediate flexibility by controlling the order of interactions. Each
kernel brings its own hyperparameters, most notably gamma in the RBF
kernel. Gamma determines how far the influence of a single training
sample extends. When gamma is small, the decision function depends on
broader patterns, yielding smoother boundaries that may not fully capture
the combined effects of confinement and geometry. When gamma is large,
the influence becomes more localized, enabling the model to follow
intricate variations in the predictor space but risking the formation of
overly complex boundaries. For polynomial kernels, the degree controls
the complexity of interactions modeled: higher degrees capture richer
nonlinearities but can make the solution unstable. The coefficient term in
polynomial and sigmoid kernels influences how strongly interactions
depend on baseline offsets. Kernel-specific scaling parameters also play a
role in preventing numerical instabilities when predictors span different
magnitudes. The interplay of these hyperparameters determines whether
SVM can adequately represent the physical and mechanical interactions
inherent to FRP confinement. Properly tuned C and gamma, combined
with an appropriate kernel choice, allow SVM to capture the nonlinear
coupling among confinement stress, stiffness, and cross-sectional
geometry. This explains its strong performance in the study, where it
achieved accuracy exceeding 90%, indicating that the optimized
configuration effectively learned the structural behavior patterns
embedded in the dataset.

Stochastic gradient descent (SGD)

Stochastic Gradient Descent (SGD) is an optimization algorithm widely
used in machine learning and deep learning for minimizing a cost function
by iteratively updating model parameters. Unlike traditional gradient
descent, which computes gradients using the entire dataset, SGD updates
parameters using a single randomly selected data point (or a small batch),
making it computationally efficient for large datasets. Stochastic Gradient
Descent (SGD) is a foundational optimization algorithm in machine
learning and deep learning. Its efficiency, simplicity, and scalability make
it a preferred choice for large datasets. While sensitive to
hyperparameters, enhancements like momentum, adaptive learning rates,
and mini-batches mitigate many of its challenges. SGD remains a
cornerstone in modern optimization techniques, enabling rapid model
training for complex tasks. The performance of the Stochastic Gradient
Descent model in predicting the axial load enhancement of FRP-confined
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concrete columns depends heavily on how its hyperparameters regulate
learning stability, convergence behavior, and the model’s ability to
approximate complex decision boundaries. The learning rate is the most
critical parameter because it governs how aggressively the model updates
its weights with each training sample. When the learning rate is too high,
the optimization path becomes unstable and oscillatory, preventing the
model from converging to a meaningful solution. When it is too low, the
model converges very slowly and may become trapped in shallow minima,
leading to underfitting. Variants such as constant, optimal, or adaptive
learning rate schedules influence whether the model maintains a steady
update pattern or adjusts to the loss landscape as training progresses. The
choice of loss function also dictates how SGD responds to misclassified or
poorly fitted samples. Hinge loss steers the model toward behavior similar
to linear SVM, while log loss encourages probabilistic outputs. For a
dataset with nonlinear interactions involving confinement stress, stiffness,
and geometric features, linear loss functions restrict the model to linear
decision boundaries, which contributes to its limited accuracy.
Incorporating penalty terms such as L1, L2, or elastic-net regularization
further shapes the optimization space. L2 regularization smooths the
solution by discouraging large weights, helping prevent overfitting but
limiting model expressiveness. L1 encourages sparsity, which can be
beneficial for feature selection but may be too restrictive when multiple
variables jointly influence the structural performance. Elastic-net blends
both effects but still operates under the assumption that a linear
combination of features is adequate to represent the underlying
relationships. The number of iterations and stopping criteria define how
long the model is allowed to refine its solution. Insufficient iterations lead
to premature stopping, while excessive iterations exacerbate overfitting,
especially when the data contain noise or overlapping classes. Shuffle
settings determine whether the order of samples varies between epochs;
shuffling typically improves convergence by reducing bias from data
ordering. The epsilon parameter in some SGD variants influences the
tolerance threshold for convergence and controls how aggressively the
algorithm terminates optimization when improvements diminish. Overall,
the underperformance of SGD in this study reflects the mismatch between
its linear modeling structure and the nonlinear, interaction-dominated
relationships inherent to FRP confinement mechanics. Even with well-
tuned learning rates, regularization, and iteration settings, SGD remains
limited by its reliance on linear separability, making it unsuitable for
capturing the coupled effects of confinement pressure, stiffness, and
geometric ratios. This constraint explains why its accuracy fell below 70%,
in contrast to more flexible models like GB, CN2, SVM, and KNN.

K-Nearest neighbors (KNN)

The K-Nearest Neighbors (KNN) algorithm is a simple yet effective
supervised machine learning method used for classification and
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regression tasks. It is a non-parametric algorithm, meaning it makes no
assumptions about the underlying data distribution, and is based on the
principle of proximity predicting outcomes based on the similarity of data
points.KNN is a robust, interpretable, and versatile algorithm suitable for
both classification and regression tasks. Despite its simplicity, it delivers
competitive results in many scenarios, especially for small datasets with
well-separated classes. Addressing its computational and scaling
challenges ensures effective deployment in real-world applications. The
effectiveness of the K-Nearest Neighbors model in predicting the axial load
enhancement of FRP-confined concrete columns depends largely on how
its hyperparameters control neighborhood structure, distance evaluation,
and the smoothness of decision boundaries. The most influential
parameter is k, the number of neighbors considered in classification.
When k is small, the model becomes highly sensitive to local fluctuations
and noise in the dataset, capturing fine-scale variations in variables such
as confinement stress, stiffness, and geometric ratios. This can lead to
overfitting because isolated or noisy samples exert disproportionate
influence. When k is large, the model produces overly smoothed decision
boundaries that may overlook important nonlinear transitions,
particularly those related to the interaction between FRP stiffness and
column shape. Optimal performance arises when k balances local detail
with global stability, allowing the model to capture nonlinear behavior
without becoming erratic. The choice of distance metric further shapes
how the model interprets similarity between samples. Euclidean distance
is commonly used, but its effectiveness depends on proper feature scaling,
since unscaled variables such as stiffness ratios or confinement stress can
dominate distance computations. Alternative metrics such as Manhattan
or Minkowski can alter sensitivity to feature magnitudes and outliers. The
weighting scheme also significantly affects predictions. Uniform weighting
treats all neighbors equally, whereas distance-based weighting assigns
greater influence to closer samples. For datasets where confinement
behavior exhibits gradual transitions, distance weighting helps emphasize
physically similar conditions and improves classification stability. The
algorithm parameter determines computational efficiency and search
structure. Methods such as ball tree or KD-tree accelerate neighbor search
but assume certain distributions in the feature space; their effectiveness is
reduced if the dataset contains complex, high-dimensional, or irregular
patterns. The leaf size setting influences the trade-off between search
precision and computational cost, with smaller leaf sizes improving
accuracy at the expense of speed. Feature scaling is an implicit but
essential hyperparameter choice. Without normalization or
standardization, features with larger numeric ranges overwhelm the
distance function, distorting the importance of variables such as corner
radius or size effect. Proper scaling ensures that all variables contribute
proportionally to similarity assessment. Overall, the KNN model performs
well because its non-parametric structure captures nonlinear interactions
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between confinement stress, material stiffness, and geometric
characteristics without requiring explicit functional assumptions.
However, its sensitivity to k, distance metrics, and feature scaling means
that careful hyperparameter tuning is crucial for achieving the high
accuracy observed in this study.

Tree decision (Tree)

A Decision Tree is a supervised machine learning algorithm used for
classification and regression tasks. It structures data into a tree-like graph
of decisions and possible outcomes, making it both interpretable and
flexible. The algorithm recursively splits the dataset based on feature
values to minimize a defined error metric or maximize information gain.
Decision Trees are powerful tools for both classification and regression
tasks, offering intuitive and interpretable solutions. While prone to
overfitting and instability, techniques like pruning and ensemble methods
(e.g., Random Forest) can mitigate these issues, making Decision Trees
invaluable in data-driven decision-making and prediction tasks. The
performance of the Decision Tree model in predicting the axial load
enhancement of FRP-confined concrete columns is governed by
hyperparameters that regulate tree complexity, splitting behavior, and the
balance between model interpretability and predictive accuracy. One of
the most influential parameters is the maximum depth, which determines
how many hierarchical splits the tree is allowed to form. Shallow trees
tend to underfit because they cannot adequately capture the nonlinear
interactions among confinement stress, stiffness, geometric properties,
and material characteristics. Deep trees, however, tend to memorize the
training data, producing highly irregular partitions that fail to generalize
well. The depth at which the tree stabilizes therefore plays a critical role
in controlling overfitting. The minimum samples required for a split and
the minimum samples per leaf also shape the granularity of the decision
boundaries. Smaller thresholds allow the model to create finely detailed
partitions that reflect subtle variations in the dataset, such as changes in
confinement effectiveness with corner rounding or stiffness increments.
However, overly small thresholds produce branches that respond to noise
rather than meaningful physical trends. Larger thresholds smooth the
structure of the tree, reducing variance but potentially overlooking
important patterns linked to FRP confinement mechanisms. The choice of
splitting criterion affects how the tree decides where to partition the
feature space. Gini impurity and entropy both measure the homogeneity
of a node but respond differently to class distributions. Entropy is more
sensitive to small changes in probability distributions, while Gini tends to
produce slightly faster and often more stable splits. The criterion
influences how strongly the model prioritizes variables like confining
stress and stiffness, which typically dominate early splits due to their high
predictive power. The maximum number of features considered at each
split controls the dimensionality of the search process. Using all features

] Sustain Res. 2026;8(1):e260010. https://doi.org/10.20900/jsr20260010



Journal of Sustainability Research

18 of 52

at every split ensures that the tree can identify the strongest predictors at
each step, often elevating confinement stress and stiffness to the top of the
hierarchy. Restricting the number of features introduces randomness and
can mitigate overfitting but may reduce accuracy when certain variables
consistently contribute more to classification outcomes. Pruning-related
hyperparameters, such as cost-complexity pruning, enable the model to
remove branches that contribute little to predictive performance. This
helps correct the natural tendency of trees to overfit, especially when the
dataset contains overlapping or noisy samples. Proper pruning results in
a more stable structure that aligns better with the underlying mechanics
of FRP confinement. Overall, these hyperparameters collectively
determine how well the Decision Tree model captures the nonlinear and
interaction-driven behavior of FRP-wrapped short concrete columns. With
appropriate tuning, the model can effectively identify dominant
predictors and produce clear, interpretable decision rules, which explains
its high accuracy within the study. However, without careful control of
depth, splitting thresholds, and pruning, the model can easily become
either too simplistic or overly specialized, highlighting the importance of
balanced hyperparameter optimization.

Random forest (RF)

Random Forest (RF) is an ensemble learning method for classification,
regression, and other tasks. It operates by building multiple decision trees
during training and outputs the average prediction for regression or the
majority vote for classification. By aggregating predictions from many
trees, RF improves accuracy, reduces overfitting, and increases robustness.
Random Forest is a robust and versatile algorithm that performs well
across a range of tasks. Its ability to reduce overfitting and handle diverse
datasets makes it an essential tool for machine learning practitioners.
While computationally intensive, the accuracy and stability it provides
justify its usage, particularly for applications requiring strong
generalization and robustness. The predictive performance of the Random
Forest model for estimating the axial load enhancement of FRP-confined
concrete columns depends on hyperparameters that control the ensemble
structure, diversity among trees, and the balance between variance
reduction and model generalization. One of the most influential
hyperparameters is the number of trees in the forest, which determines
the stability of the ensemble. A larger number of trees reduces variance
by averaging many different decision boundaries, making the model less
sensitive to noise in variables such as confinement stiffness, stress ratio,
or geometric parameters. However, extremely large forests provide
diminishing returns and increase computational cost without meaningful
accuracy gains. The maximum depth of individual trees governs how
complex each tree is permitted to become. Deep trees capture detailed
nonlinear relationships and interactions between features such as corner
radius or size effect, but they also risk overfitting if grown without
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constraints. Shallow trees generalize better but may miss critical patterns
that influence the confinement efficiency of FRP wrapping. The model’s
overall behavior results from the interplay between tree depth and the
averaging effect of the ensemble. The number of features considered at
each split is central to creating diversity within the forest. By restricting
the number of candidate variables at each node, Random Forest ensures
that different trees explore different subsets of the feature space. This
randomness prevents dominant predictors such as confinement stress or
stiffness from controlling all early splits, enabling the forest to capture
complementary effects from geometric ratios or material indices. If too
few features are used, the model risks underrepresenting strong
predictors; if too many are included, trees may become overly similar and
reduce the ensemble’s advantage. Minimum samples per split and per leaf
regulate how granular each tree becomes. Smaller thresholds allow
intricate partitions in regions where small variations in stiffness or
geometric configuration lead to changes in behavior, but they also amplify
sensitivity to noise. Larger thresholds smooth the partitions and promote
generalization, though at the cost of potentially overlooking meaningful
structural transitions. Bootstrap sampling, which determines whether
each tree is trained on a randomly sampled subset of the data, directly
affects variance and robustness. With bootstrapping enabled, individual
trees are exposed to different training subsets, enhancing diversity and
reducing the risk that the forest overfits specific patterns. Disabling
bootstrapping makes the forest behave more like a uniform ensemble of
similar trees, limiting its ability to generalize. The split criterion, typically
Gini impurity or entropy, dictates how the model evaluates the quality of
each split. Although both criteria function similarly, their subtle
differences influence the prioritization of dominant predictors. For
example, entropy may produce slightly more refined splits when
differences in confinement parameters are subtle, while Gini offers
computational efficiency and stable performance. Overall, the Random
Forest model performs well because its hyperparameters collectively
enable it to capture complex, nonlinear interactions among confinement
stress, stiffness, and geometric features while mitigating overfitting
through averaging and controlled randomness. The moderately lower
accuracy compared to models like Gradient Boosting or CN2 reflects the
challenge of fully capturing certain fine-scale transitions in FRP
confinement behavior, but the model remains robust and reliable when
hyperparameters are properly tuned.

Response surface methodology (RSM)

Response Surface Methodology (RSM) is a statistical and mathematical
technique used for modeling and analyzing problems where a response of
interest is influenced by multiple variables. Its primary goal is to optimize
the response by determining the relationships between the input variables
and the response. RSM is widely used in experimental design, process
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optimization, and product development. Response Surface is a graphical
representation of the relationship between the input variables
(independent variables) and the response (dependent variable). RSM
relies on structured experimental designs such as factorial designs, central
composite designs (CCD), and Box-Behnken designs.RSM is a powerful tool
for experimental optimization and understanding factor-response
relationships. While it excels in situations with relatively few factors and
clear functional relationships, it can be complemented with advanced
machine learning methods for highly nonlinear or complex systems. Its
efficiency and graphical outputs make it an invaluable method in various
engineering, material science, and industrial optimization applications.

Sensitivity Analysis

The axial capacity of concrete columns wrapped with Fiber Reinforced
Polymer (FRP) sheets is a critical aspect in designing reinforced concrete
structures, particularly in terms of improving their load-bearing capacity,
durability, and resistance to various forms of stress. Sensitivity analysis is
an essential technique used to identify how different factors (inputs)
influence the axial capacity (response) of these columns. The sensitivity
analysis examines the impact of various design parameters on the axial
capacity of short concrete columns wrapped with FRP sheets. These
columns are typically used in structural engineering to enhance the
performance and longevity of existing concrete structures or to improve
the load resistance capacity of new constructions. Columns can have
different cross-sectional shapes (circular, square, rectangular, or other
irregular shapes), which will influence the distribution of stresses and the
effectiveness of the FRP wrapping. The type of FRP material (e.g., carbon,
glass, or aramid fibers) affects the bonding characteristics, stiffness,
strength, and overall enhancement of the concrete column. These
materials differ in terms of their modulus of elasticity, tensile strength,
and layer thickness. The thickness of the FRP sheets around the concrete
column directly impacts the axial load resistance. Thicker wraps can offer
more confinement, leading to a greater enhancement in the column's axial
capacity. The bonding between the FRP sheet and the concrete surface
plays a crucial role in transferring the stresses from the concrete to the
FRP. Poor adhesion reduces the efficiency of the FRP wrapping. The
strength of the concrete (e.g., compressive strength fc) is an important
factor that affects the column's overall capacity. Higher-strength concrete
generally leads to an increase in the axial capacity, particularly when
enhanced by FRP wrapping. The orientation of the fibers in the FRP sheet
(whether longitudinal, transverse, or a combination) will affect the
confinement effectiveness and hence the axial load capacity. The
dimensions of the concrete column (e.g., diameter or side length, height)
significantly influence the axial load capacity. Larger columns tend to
have higher axial capacity, but the effect of wrapping with FRP varies
depending on the geometry. The curing process and the conditions under
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which the concrete sets (e.g., temperature, humidity) affect the overall
performance of the concrete and can influence the axial capacity of the
column wrapped with FRP. To conduct sensitivity analysis for the axial
capacity of short concrete columns wrapped with FRP sheets, a
mathematical or computational model (such as finite element analysis,
nonlinear regression models, or machine learning-based models) can be
used to evaluate the relationship between input parameters and the axial
load response. A design of experiments (DOE) approach can be used to
select combinations of the parameters mentioned above. A full factorial
design or central composite design (CCD) might be used to systematically
vary input parameters like column shape, FRP thickness, concrete strength,
etc. Finite Element Analysis (FEA) can be used to simulate the behavior of
concrete columns wrapped with FRP under different loading conditions.
In this context, the axial capacity of the column can be determined by
considering various material properties and geometrical configurations.
Software such as ABAQUS or ANSYS is often used to simulate the behavior
of the FRP-wrapped columns. Once the simulation or model is developed,
global sensitivity analysis can be conducted using methods like variance-
based methods (e.g., Sobol indices), regression-based sensitivity analysis
and Monte Carlo simulations to account for uncertainty in input
parameters. From the sensitivity analysis, the impact of each parameter
on the axial capacity can be determined. Circular columns generally show
the highest axial capacity when wrapped with FRP due to uniform stress
distribution. Rectangular or square columns may exhibit different
confinement effects, influencing the overall axial capacity differently
depending on the aspect ratio. The type of FRP material (e.g., carbon FRP
is stronger and stiffer than glass FRP) can significantly enhance the axial
load capacity of the column. Thicker FRP sheets also lead to higher axial
capacity as they offer better confinement to the concrete. High-strength
concrete generally results in higher axial capacity, with FRP sheets
providing more effective confinement. In contrast, for low-strength
concrete, the FRP sheets offer less improvement in axial load resistance.
The quality of bonding between the FRP sheets and the concrete is a
critical factor. Any failure or delamination at the interface reduces the
axial capacity enhancement provided by FRP wrapping. Proper curing
conditions, especially temperature and humidity, impact the compressive
strength of concrete, influencing the axial load capacity of the wrapped
column. Sensitivity analysis can provide insight into the most effective
combination of parameters (e.g., FRP type, thickness, and column shape)
to maximize the axial capacity of short concrete columns. This can guide
engineers in selecting optimal materials and designs for concrete
structures. By understanding the parameters that most influence axial
capacity, unnecessary over-engineering can be avoided, leading to cost-
effective designs that still meet safety and performance standards. The use
of FRP-wrapped concrete columns can lead to the reuse of materials and
longer-lasting structures, contributing to sustainable construction
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practices. Sensitivity analysis provides a foundation for developing design
guidelines that can be used in practice to improve the safety and
performance of concrete columns in buildings and infrastructure.
Sensitivity analysis of the axial capacity of short concrete columns
wrapped with FRP sheets is a crucial step in optimizing column design and
ensuring safe and efficient use of materials. By understanding the impact
of various factors such as column shape, FRP properties, concrete strength,
and curing conditions, engineers can make informed decisions about
material selection, design configurations, and construction techniques,
ultimately enhancing the performance and sustainability of concrete
structures. A preliminary sensitivity analysis was carried out on the
collected database to estimate the impact of each input on the (Y) values.
“Single variable per time” technique is used to determine the “Sensitivity
Index” (SI) for each input using Hoffman & Gardener [21] formula as
follows:

Y(Xmax) - Y(Xmin) (10)
Y(Xmax)

A sensitivity index of 1.0 indicates complete sensitivity, a sensitivity
index less than 0.01 indicates that the model is insensitive to changes in
the parameter. Figure 3 shows the sensitivity analysis with respect to
Fco/Fcc. The sensitivity analysis with respect to Fco/Fcc having 40% Conf
influence, 31% Stiff influence, 18% d/b influence, 11% r/b influence and 0%
b/b0 influence on the axial capacity of short concrete columns of different
shapes wrapped with FRP sheets. The sensitivity analysis conducted on
short concrete columns wrapped with Fiber Reinforced Polymer (FRP)
sheets investigates how different factors influence the axial capacity (the
load-bearing capacity) of these columns. Specifically, the sensitivity
analysis looks at the ratio of Fco/Fcc, as well as other important
parameters, and their impacts on axial capacity. Fco/Fcc Ratio (40%
Contribution): The ratio Fco/Fcc represents the strength ratio of the
concrete with and without external FRP confinement, where Fco is the
axial strength of the confined concrete and Fcc is the axial strength of
unconfined concrete. A 40% influence on axial capacity means that Fco/Fcc
is a highly significant factor in determining the load-bearing capacity of
the concrete column. This implies that a higher Fco/Fcc ratio indicates
better confinement provided by the FRP wrap, leading to a larger increase
in axial capacity. Thus, selecting an appropriate FRP material that
enhances Fco while ensuring good bonding with the concrete is crucial for
improving axial strength. This ratio is particularly important when
optimizing the type of FRP wrapping (such as carbon or glass fibers) and
the number of FRP layers used. Stiffness (31% Contribution): The stiffness
of the concrete column (or more specifically the stiffness of the FRP wrap
and its interaction with concrete) plays a vital role in determining the axial
capacity. Stiffness typically refers to the column's ability to resist
deformation under axial load.31% influence on the axial capacity
indicates that the column's material properties (including the modulus of

SI(Xn) =
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elasticity of both the FRP and concrete) have a substantial impact on the
column's ability to withstand compressive forces. This implies that a
higher stiffness of the FRP wrap leads to better confinement and more
efficient load distribution, improving the column’s axial load capacity. In
practice, this suggests that selecting an FRP material with high stiffness
(e.g., carbon FRP) will lead to enhanced axial strength, especially in high-
performance applications. d/b (18% Contribution):d/b refers to the
diameter-to-length ratio or width-to-length ratio (for circular or
rectangular columns, respectively), representing the column's geometric
shape.18% influence indicates that the geometry of the column (its cross-
sectional shape and aspect ratio) plays a significant, though slightly
smaller, role in determining the axial capacity. Shorter and stiffer columns
typically show higher axial capacities than slender ones. This implies that
columns with a smaller d/b ratio (more compact or less slender columns)
generally exhibit better performance when wrapped with FRP because the
confinement effect is more evenly distributed. This also emphasizes the
need for optimizing column dimensions based on the intended application.
r/b (11% Contribution):r/b represents the radius-to-length or radius-to-
width ratio, which is another geometric aspect affecting how forces are
transferred within the column.11% influence indicates that the radius-to-
length ratio also contributes to the axial capacity but to a lesser degree
than Fco/Fcc and stiffness. A column with a higher radius-to-length ratio
might undergo more distortion under axial load, potentially leading to
reduced performance. This implies that a balanced r/b ratio is necessary
for optimizing confinement efficiency and improving axial capacity. In
practice, columns with more compact cross-sections or higher r/b values
may benefit more from FRP wrapping.b/b0 (0% Contribution):b/b0 is the
width-to-original width ratio, indicating the relative increase in the width
of the column due to the FRP wrapping or the change in dimensions after
confinement.0% influence suggests that this parameter has no significant
impact on the axial capacity of the column, implying that, within the scope
of the study, variations in the b/b0 ratio are negligible in determining the
axial load-bearing capacity when FRP wraps are used. This implies that
since b/b0 has no influence, this suggests that other factors (such as Fco/Fcc,
stiffness, and geometry) are far more critical to the axial capacity than the
column's increase in width due to the FRP application. The findings from
the sensitivity analysis have direct implications for the design and
strengthening of concrete structures in the field. The factors with the
greatest influence, particularly Fco/Fcc (40%) and stiffness (31%), should
be prioritized when selecting FRP materials and designing the wrapping
system for concrete columns. In practical applications, a higher Fco/Fcc
ratio can be achieved by using FRP materials with higher tensile strength,
such as carbon FRP, which enhances confinement. The stiffness of the FRP
material is crucial, especially in cases where the column needs to carry
significant axial loads. Thus, materials with high elastic moduli should be
chosen for better confinement. Column dimensions should be optimized
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to reduce d/b and r/b ratios, ensuring the columns are not too slender,
which might hinder the confinement effect provided by the FRP wrapping.
The b/b0 ratio being insignificant in the sensitivity analysis suggests that,
in most practical applications, column dimensions need not be modified
drastically for the sake of the FRP wrapping. The sensitivity analysis of the
axial capacity of short concrete columns wrapped with FRP sheets reveals
the most influential parameters affecting the strength and performance of
these columns. The Fco/Fcc ratio and stiffness were found to have the
highest impact, emphasizing the importance of material properties and
confinement efficiency. The geometry of the column (expressed through
d/b and r/b ratios) also plays a significant role, while the b/b0 ratio was
found to have no noticeable impact on axial capacity. For field applications,
this analysis suggests that engineers should focus on optimizing the FRP
material selection, ensuring appropriate stiffness and confinement
efficiency, and optimizing column geometry to maximize axial capacity.
These considerations are crucial for improving the safety, durability, and
cost-effectiveness of concrete structures wrapped with FRP, especially in
the context of structural rehabilitation and strengthening.

Figure 3. Sensitivity analysis with respect toFco/Fcc.
RESULTS AND DISCUSSION

GB Model

The developed (GB) model was based on (Scikit-learn) method with
learning rate of 0.1and minimum splitting subset of 2. Nine trials were
conducted for each model started with one tree and one tree level and
increased gradually to four trees and nine tree levels. The reduction of the
prediction Error (%) for each trail is presented in Figure 4. Accordingly,
the models with four trees and nine tree levels are considered the
optimum ones. Performance metrics of the three developed models for
both training and validation dataset are listed in Table 2. The average
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achieved accuracy was (92%) and the R2 is 0.96. The relations between
calculated and predicted values are shown in Figure 5. The analysis of a
Gradient Boosting (GB) model for predicting the axial capacity of short
concrete columns of different shapes wrapped with FRP sheets involves
considering the design of the model and its implications for real-world
application. Gradient Boosting is well-suited for capturing non-linear
relationships and interactions among features, which are often present in
structural engineering problems. The choice of GB suggests that the
problem involves complex dependencies between input variables (e.g.,
column shape, material properties, FRP thickness, etc.) and axial capacity.
The effectiveness of the model depends on the quality and relevance of
input features, such as column geometry (circular, square, rectangular),
concrete compressive strength, FRP properties (thickness, tensile strength,
modulus of elasticity) and wrapping configuration.The high accuracy (92%)
and R2 (0.96) suggest effective feature selection or engineering, capturing
most of the variability in the axial capacity.Performance metrics indicate
a robust training process, likely involving hyperparameter tuning to
optimize learning rates, tree depths, and boosting stages. With an average
achieved accuracy of 92%, the model is reliable for predicting axial
capacity in most scenarios. However, this accuracy may vary with the
quality and representativeness of the input data. Any significant
deviations in the field data from the training data distribution could
reduce performance. The R? value of 0.96 indicates a strong correlation
between predicted and actual axial capacities, suggesting the model
captures the majority of the variation. This implies a high level of
confidence in its predictions for design and analysis purposes. A potential
limitation lies in the generalization ability of the model. If the training data
doesn't adequately represent all possible shapes, materials, or boundary
conditions, predictions for new scenarios may be less reliable. Practical
application requires careful measurement of input features. Inaccurate
data collection in the field (e.g., variability in material properties) could
lead to errors in predictions. Different shapes (circular, square,
rectangular) might introduce unique behavior in how FRP confinement
enhances axial capacity. The model's performance across these shapes
should be validated. In field applications, the GB model should
complement, not replace, code-based methods. Engineers must ensure
that the model's predictions align with safety factors and design codes. Test
the model against field data from diverse real-world scenarios to confirm
its reliability and robustness. Introduce factors of safety to account for
potential prediction errors or uncertainties in field conditions.
Periodically update the model with new data to improve its generalization
capabilities. Develop software tools or user interfaces that simplify
inputting parameters and interpreting results for practitioners. Align the
model outputs with existing design codes to facilitate its adoption by
structural engineers. In summary, the GB model demonstrates strong
predictive performance for short FRP-wrapped concrete columns' axial
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capacity. While its accuracy and R? value are impressive, practical
application should focus on validating the model, managing uncertainties,
and ensuring its alignment with design codes for safe and effective use.

Table 2. Performance measurements of developed models for (Fc).

Model Dataset SSE MAE (MPa) MSE (MPa) RMSE (MPa) Error (%) Accuracy (%) R?

GB Training 10.4 0.055 0.026 0.162 10% 90% 0.94
Validation 1.1 0.030 0.011 0.106 7% 93% 0.98
CN2 Training 18.3 0.088 0.046 0.214 13% 87% 0.90
Validation 1.3 0.035 0.013 0.112 7% 93% 0.97
NB Training  340.7 0.606 0.852 0.923 56% 44% 0.41
Validation 117.9 0.690 1.179 1.086 67% 33% 0.38
SVM Training 19.9 0.117 0.050 0.223 13% 87% 0.88
Validation 1.4 0.050 0.014 0.117 7% 93% 0.97
SGD Training 114.6 0.385 0.286 0.535 32% 68% 0.45
Validation 22.5 0.345 0.014 0.474 29% 71% 0.53
KNN Training 8.8 0.052 0.022 0.148 9% 91% 0.95
Validation 1.6 0.050 0.016 0.127 8% 92% 0.97
Tree Training 10.3 0.055 0.026 0.160 10% 90% 0.94
Validation 1.1 0.030 0.011 0.106 7% 93% 0.97
RF Training 20.1 0.096 0.050 0.224 14% 86% 0.88
Validation 2.9 0.063 0.029 0.171 11% 89% 0.94
60%
§ —8—2 trees
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Figure 4. Reduction in Error % with increasing the number of trees and levels.
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Figure 5. Relation between predicted and calculated strength using (GB).

CN2 Model

Similarly, five (CN2) models were developed considering “Laplace
accuracy” as evaluation measurement with beam width of 1.0and
minimum rule coverage of 1.0. The maximum rule length was started by
2.0 and increased up to 10. Figure 6 shows the reduction in Error % with
increasing the rule length. Accordingly, rule length of 10.0 is considered.
The developed models contains247 “IF condition” rules, Figure.7 presents
some of these rules. Performance metrics of the developed model for both
training and validation dataset are listed in Table 2. The average achieved
accuracy was (90%) and R2 is 0.935. The relations between calculated and
predicted values are shown in Figure 8. Analyzing the CN2 rule induction
algorithm for predicting the axial capacity of short concrete columns of
different shapes wrapped with FRP sheets involves evaluating its design
and practical implications, especially considering its average achieved
accuracy (90%) and R2 (0.935). The CN2 algorithm is a rule-based learning
method that generates interpretable rules for classification or regression
problems. Its use indicates a focus on interpretability and simplicity in
capturing relationships between input features and axial capacity. Rule-
based models are advantageous for understanding the impact of specific
variables or conditions (e.g., column shape, FRP thickness, concrete
strength) on outcomes. The success of the model depends on the
representativeness and quality of the features in the dataset. Accuracy
(90%) indicates reliable predictions but slightly lower than the GB model's
92%. This may be due to the CN2 model's simpler structure, which could
overlook some complex interactions. R? (0.935) suggests the model
captures a significant portion of the variance in axial capacity, making it a
robust choice for practical use. One of the key advantages of the CN2 model
isits interpretability. Engineers can easily understand the generated rules,
making the model highly transparent and suitable for decision-making. A
rule might state that "If column shape is circular and FRP thickness > 2 mm,
then axial capacity increases by X%," which is directly actionable. The 90%
accuracy suggests the model provides reliable predictions but may not be
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as precise as more complex models (e.g., GB). This could result in slightly
conservative or less reliable predictions in edge cases. The R2 value (0.935)
shows strong correlation, but real-world deviations (e.g., material
inconsistencies or unmodeled factors) might reduce reliability. Rule-based
models can struggle with generalization if training data is limited or not
comprehensive. Field conditions that deviate from the training dataset
(e.g., unique column shapes or non-standard FRP properties) could lead to
errors. The CN2 model's reliance on specific rules makes it sensitive to
noise or inaccuracies in input data. Field application requires high-quality
and consistent data collection. The simplicity of CN2 rules might limit the
model's ability to capture highly complex, non-linear interactions between
variables, especially for diverse shapes or configurations. Validate the
model using field data across various column shapes, sizes, and FRP
configurations to ensure it performs reliably in diverse scenarios. Apply
safety margins to the model's predictions to account for uncertainties in
field conditions and data input. Update the model regularly with new data
to improve rule coverage and generalization for diverse applications.
Align the model's rules with design codes and standards to ensure
compliance and facilitate adoption by practitioners. Use the model as a
supplementary tool alongside other methods (e.g., empirical equations,
finite element models) rather than a standalone solution, particularly for
high-stakes designs. The CN2 model offers greater interpretability but may
underperform compared to the GB model in terms of accuracy and
capturing complex interactions. Its rule-based nature makes it more
intuitive for practitioners but potentially less robust for highly complex or
novel scenarios. The CN2 model, with a 90% accuracy and R2 of 0.935, is a
reliable, interpretable tool for predicting the axial capacity of short FRP-
wrapped concrete columns. Its design emphasizes simplicity and
transparency, making it a good choice for scenarios where interpretability
is essential. However, its practical application requires careful validation,
alignment with safety standards, and supplementary use alongside other
methods to ensure robustness in diverse field conditions.

70%
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1% Rule length
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Figure 6. Reduction in Error % with increasing the rule length.
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If condisions
1 IF Conf<=0.164 AND Stiff>=0.055 AND r/b<=0.136 AND Stiff<=0.060 AND Conf>=0.119 THEN Fco/Fcc=0.5
IF r/b>=0.16 AND Conf<=0.164 AND b/bo<=1.333 AND b/bo<=1.0 AND r/b<=0.4 AND Stiff<=0.064 AND
r/b>=0.25 THEN Fco/Fcc=0.25
3  IFb/bo>=1.36 AND Stiff<=0.0899 AND Stiff>=0.083 AND Conf>=0.247 THEN Fco/Fcc=0.75
4  |F Conf<=0.164 AND Stiff<=0.055 AND Conf>=0.128 AND Stiff>=0.050 AND Conf<=0.136 THEN
5 IF Conf>=0.451 AND Stiff>=0.498 AND Conf<=1.179 AND Stiff>=0.760 THEN Fco/Fcc=0.75

245 IF Conf>=0.451 AND r/b>=0.5 AND Conf>=1.533 THEN Fco/Fcc=4.5
246 IF Conf>=0.451 AND Stiff>=0.498 AND Stiff>=0.760 AND Conf>=1.70 THEN Fco/Fcc=4.25
247 IF TRUE THEN Fco/Fcc=1.25

Figure 7. Sample of the developed CN2 “If condition”.
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Figure 8. Relation between predicted and calculated strength using (CN2).

NB Model

Traditional Naive Bayes classifier technique considering the concept of
“Maximum likelihood” was used to develop the nine models. Although this
type of classifier is highly scalable and are used in many applications, but
it showed a very low performance as shown in Table 2. The relations
between calculated and predicted values are shown in Figure 9. The
achieved average accuracy was12% and R2 is 0.395. The performance of
the Naive Bayes (NB) model for predicting the axial capacity of short FRP-
wrapped concrete columns, with an average accuracy of 12% and R2 of
0.395, is significantly subpar. Naive Bayes is typically used for
classification problems and assumes strong independence between input
features. Its application to this regression problem suggests an
inappropriate choice of model architecture or a misalignment with the
nature of the data. The independence assumption likely fails in this case,
as features such as column shape, FRP thickness, and concrete strength are
interdependent. Typical features (e.g., geometry, material properties, and
FRP characteristics) are likely correlated, violating the NB assumption of
feature independence. NB's reliance on probability distributions may lead
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to oversimplified predictions in a complex, nonlinear domain like axial
capacity. Accuracy (12%): The model provides predictions that are only
marginally better than random guesses, highlighting significant issues
with its suitability for the task. R? (0.395) indicates that the model explains
less than half of the variance in the axial capacity, which is inadequate for
reliable predictions. With only 12% accuracy, the NB model is not reliable
for predicting axial capacity. Its predictions may lead to unsafe or overly
conservative designs. Users unfamiliar with the model’s limitations might
incorrectly trust its outputs, leading to flawed engineering decisions. Axial
capacity prediction involves nonlinear relationships and interactions
among variables, which NB cannot effectively model due to its
independence assumption. The low R? suggests poor generalization to
unseen data. This makes the model unsuitable for field conditions, where
variability is high and the data may deviate significantly from the training
set. While NB models are simple and interpretable in classification tasks,
their application in regression provides little insight into feature
contributions, especially when predictions are inaccurate. NB is
inherently unsuitable for this regression problem due to its simplistic
assumptions. A model better suited to nonlinear, interactive relationships
such as Gradient Boosting, Random Forests, or even Neural Networks
should be employed. Conduct a detailed analysis of feature dependencies
and relationships. Use models that can capture and leverage these
interactions. Ensure data preprocessing and feature engineering address
issues such as multicollinearity and represent all relevant structural
behaviors. Models like Gradient Boosting (GB) or Support Vector Machines
(SVM) with appropriate kernels could handle the complex interactions
between input variables more effectively. Using a model with such poor
performance in structural design could result in unsafe structures if actual
axial capacities are significantly overestimated or underestimated.
Deploying a model with such low accuracy might undermine confidence
in computational tools among practitioners. Time and resources spent on
refining or validating an inappropriate model could be better directed
toward exploring more suitable alternatives. The Naive Bayes model is
highly unsuitable for predicting the axial capacity of FRP-wrapped
concrete columns due to its low accuracy (12%) and R2 (0.395). Its poor
performance highlights a fundamental mismatch between the model's
assumptions and the complexity of the problem. Abandoning NB for more
sophisticated regression techniques is essential for producing reliable,
actionable predictions in this domain.
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Figure 9. Relation between predicted and calculated strength using (NB).

SVM Model

The developed (SVM) model was based on “polynomial” kernel with
cost value of 100, regression loss of 0.10 and numerical tolerance of 1.0.
The kernel started with one-degree polynomial (linear) and increased up
to four-degree polynomial (quartic). The reduction in the error % with
increasing the polynomial degree is illustrated in Figure 10. Accordingly,
(quartic) kernel is considered. Performance metrics of the three developed
models for both training and validation dataset are listed in Table 2. The
average achieved accuracy was 90% and R2 is 0.925. The relations between
calculated and predicted values are shown in Figure 11. The Support
Vector Machine (SVM) model, achieving an average accuracy of 90% and
an R? of 0.925, demonstrates strong predictive capability for the axial
capacity of short concrete columns wrapped with FRP sheets. SVM is a
powerful algorithm for regression problems (SVR), especially for
capturing non-linear relationships. It relies on mapping input data to a
high-dimensional feature space using kernels (e.g., radial basis function
(RBF), polynomial). The choice of SVM indicates the problem's complexity
and the need for a flexible model that handles intricate relationships
between features (e.g., column shape, material properties, and FRP
characteristics). Accuracy (90%) indicates the model performs well across
the dataset, reliably predicting axial capacity. Rz (0.925) suggests the model
explains most of the variance in the data, making it suitable for capturing
essential patterns. Success with SVM depends heavily on the kernel type
and hyperparameters (e.g., regularization parameter C, kernel coefficient
y). The high performance suggests effective tuning, potentially via cross-
validation. SVM models work best with a moderate-sized dataset, as
training time and memory requirements can increase with larger datasets.
A well-curated dataset likely underpins the model's success. With 90%
accuracy and an R? of 0.925, the SVM model is reliable for most design
scenarios, providing accurate predictions of axial capacity. These metrics
ensure confidence in the model for routine field use, particularly in well-
defined conditions that match the training data. The non-linear
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capabilities of SVM allow it to model the effects of variables like column
geometry, FRP wrapping, and material properties effectively. For example,
the model can predict how a circular column responds to increased FRP
thickness differently from a rectangular column. SVM models generalize
well to unseen data when properly trained, but care must be taken to
ensure that the training dataset covers the range of field conditions (e.g.,
column shapes, material properties, and boundary conditions). SVM can
be sensitive to noisy or imbalanced datasets. Inaccurate field data, such as
variability in material properties or incomplete measurements, could
reduce prediction reliability. While training SVMs can be computationally
intensive, especially with large datasets, prediction in field applications is
typically fast, making SVM practical for real-time use. Validate the model
across a wide range of field scenarios, ensuring it performs well for
different column shapes, FRP configurations, and material properties.
Data quality ensure accurate measurement of input parameters (e.g., FRP
properties, column geometry) to maintain prediction reliability.
Incorporate safety margins into the model’s predictions to account for
potential variability or unseen conditions in the field. Develop user-
friendly interfaces or software that integrate the SVM model, allowing
engineers to input parameters and receive predictions easily. Retrain and
fine-tune the model periodically with updated datasets from field tests and
experiments to ensure robustness. Unlike rule-based models like CN2, SVM
lacks straightforward interpretability. Engineers must rely on the model’s
outputs without detailed insights into the exact relationships between
inputs and outputs. While SVM performs slightly worse than Gradient
Boosting (GB) in terms of R2 (0.925 vs. 0.96), it offers a robust alternative
with comparable accuracy and is likely less prone to overfitting with
proper tuning. Compared to simpler models (e.g., Naive Bayes), SVM is far
more effective for this complex, non-linear problem. The SVM model, with
90% accuracy and R2 of 0.925, is a strong candidate for predicting the axial
capacity of FRP-wrapped concrete columns. Its ability to model non-linear
relationships makes it well-suited for this application, provided that the
training data is representative of field conditions. To maximize its utility,
engineers should ensure data quality, validate the model across diverse
scenarios, and integrate it with practical design tools. However, its limited
interpretability should be mitigated by incorporating safety factors and
supplementary analyses.
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Figure 10. Reduction in Error % with increasing the polynomial degree.
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Figure 11. Relation between predicted and calculated strength using (SVM).

SGD Model

These three models were developed considering modified Huber
classification function and “Elastic net” re-generalization technique with
mixing factor of 0.01 and strength factor of 0.001. The learning rate starts
with 0.01, then gradually decreased to 0.001. The reduction in error% with
reducing the learning rate is presented in Figure 12. Performance metrics
of the three developed models for both training and validation dataset are
listed in Table 2. The average achieved accuracy was69% and R2 is 0.49.
The relations between calculated and predicted values are shown in
Figure 13. The Stochastic Gradient Boosting (SGB) model, achieving an
average accuracy of 69% and an R2 of 0.49, exhibits moderate performance
in predicting the axial capacity of FRP-wrapped short concrete columns.
Stochastic Gradient Boosting combines Gradient Boosting with
randomization, introducing subsampling to improve generalization and
reduce overfitting. However, its effectiveness heavily depends on proper
parameter tuning and quality of the training data. The suboptimal
performance (accuracy 69% and R? 0.49) indicates possible issues such as
insufficient or non-representative training data, poorly tuned
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hyperparameters (e.g., learning rate, number of estimators, max depth),
and high noise in the dataset or a lack of critical features. SGB typically
performs well with a variety of features and can model non-linear
interactions. The moderate performance suggests either the model
struggled to capture complex dependencies or the features did not
adequately describe the problem. Accuracy (69%), while better than
random guessing, it indicates the model's predictions often deviate
significantly from actual values. R2 (0.49) suggests the model explains less
than half of the variance in the axial capacity, making it unreliable for
accurate predictions in diverse scenarios. With 69% accuracy and an R? of
0.49, the SGB model lacks sufficient precision for high-stakes structural
engineering decisions. Its predictions may lead to unsafe designs if axial
capacities are overestimated or to inefficiencies if they are
underestimated. The low R? indicates poor generalization. In real-world
field conditions, where input variables can vary widely, the model’s
predictions may deviate significantly from actual behavior. The model
may be sensitive to noisy or imbalanced datasets. Inconsistent or
incomplete input data (e.g., variations in material properties or column
geometry) can exacerbate prediction errors. The moderate performance
suggests either underfitting, where the model is too simple to capture
relationships, or overfitting, where the model learns noise in the training
data but fails to generalize to new data. SGB models are computationally
more complex than simpler algorithms like linear regression or Naive
Bayes. The modest performance does not justify the additional complexity
in this case. Improve the dataset by ensuring it covers a wide range of
column shapes, sizes, FRP configurations, and material properties.
Perform feature engineering to include critical factors that may influence
axial capacity, such as boundary conditions and environmental effects.
Optimize SGB parameters (e.g., learning rate, subsample ratio, number of
estimators) using techniques like grid search or random search combined
with cross-validation. Investigate feature importance to identify variables
that contribute most to the predictions and ensure the dataset adequately
captures their effects. Consider using other models like Gradient Boosting
(GB), Random Forests, or Neural Networks, which might better capture the
complexity of the problem. Explore ensemble methods or hybrid models
that combine the strengths of SGB with other algorithms to improve
predictive accuracy and generalization. Given its moderate accuracy, the
SGB model should only be used as a supplementary tool alongside
traditional design methods or other predictive models with higher
accuracy. Introduce conservative safety factors to account for the model’s
limited reliability and variability in predictions. Validate the model on
field data before use in practical applications, ensuring its predictions
align with observed behavior for specific cases. Engineers using the model
must be aware of its limitations and avoid over-reliance on its predictions
for critical design decisions. The SGB model underperforms compared to
other models like SVM or Gradient Boosting (GB), which often achieve R?
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values above 0.9 for similar problems. The additional computational effort
involved in training and deploying an SGB model does not yield sufficient
accuracy to justify its use over simpler or more advanced algorithms. The
SGB model, with a 69% accuracy and R2 of 0.49, is moderately effective but
not sufficiently reliable for predicting the axial capacity of FRP-wrapped
concrete columns. Its performance suggests issues with data quality,
feature representation, or model tuning. To improve its applicability,
efforts should focus on better data curation, parameter optimization, and
potentially exploring alternative or complementary models. For field
applications, the SGB model should only play a supplementary role, with
conservative safety margins and validation against empirical or
experimental data.
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Figure 12. Reduction in Error % with reducing the learning rate.
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Figure 13. Relation between predicted and calculated strength using (SGD).

KNN Model

Considering number of neighbors of 1.0, Euclidian metric method and
weights were evaluated by distances, the developed (KNN) models showed
the best accuracy. (KNN) model showed the best performance where the
average error% was92% and R2 is 0.96. The relations between calculated

] Sustain Res. 2026;8(1):e260010. https://doi.org/10.20900/jsr20260010



Journal of Sustainability Research

36 of 52

and predicted values are shown in Figure 14. The k-Nearest Neighbors
(kNN) model, achieving an R2 of 0.96 but producing an average error of
92%, presents an unusual performance pattern that warrants closer
examination. kNN is a non-parametric, instance-based learning algorithm
that predicts outcomes based on the similarity of input features to its
nearest neighbors in the training dataset. Its high R2 suggests it captures a
strong correlation between features (e.g., column shape, FRP properties,
and concrete strength) and the axial capacity. However, the extremely
high error indicates significant issues in implementation, scaling, or the
data's suitability for kNN. R2 (0.96): Indicates the model accounts for 96%
of the variance in the data, which should theoretically make it a strong
predictor. Average Error (92%), highlights an inconsistency; despite high
R?, the absolute prediction accuracy is extremely poor. KNN can bhe
computationally expensive for large datasets since it requires storing the
entire dataset and computing distances for every prediction. This may
hinder its practicality for large-scale applications. The high error
percentage makes the KNN model unreliable for practical use despite its
strong R2. Engineers cannot depend on it to provide consistent or accurate
axial capacity predictions in field conditions. kNN heavily relies on the
quality, representativeness, and density of training data. Any gaps or
biases in the data can significantly skew predictions. KNN is sensitive to
the scale of input features. If features such as column dimensions, FRP
thickness, or concrete strength are not normalized, the model may assign
disproportionate importance to certain variables, leading to errors. KNN’s
predictions are based on local similarities. In the case of sparse or
unevenly distributed training data, the model may fail to generalize to
unseen field conditions. Combine kNN with other algorithms (e.g.,
ensemble methods) to leverage its strengths while compensating for its
weaknesses. The combination of high R? and extremely high average error
makes the kNN model unreliable for field use in its current form. Rigorous
testing against experimental or field data is essential to validate the
model’s utility. The kNN model could serve as a supplementary tool for
specific datasets or scenarios where high-quality, dense training data are
available. kNN has the potential to model non-linear relationships without
assuming a functional form, making it flexible for complex problems.
Compared to models like Gradient Boosting or SVM, kNN is highly sensitive
to data issues, scaling, and computational efficiency. Its high error
undermines its utility despite the strong R2. The kNN model, despite an
impressive R2 of 0.96, is fundamentally flawed for predicting the axial
capacity of short FRP-wrapped concrete columns due to its average error
of 92%. This inconsistency likely stems from issues such as poor feature
scaling, inappropriate parameter choices, or data quality problems. While
the model shows potential, it requires significant adjustments and
rigorous validation before it can be considered for field applications. As it
stands, it is unsuitable for reliable design or decision-making in structural
engineering contexts.
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Figure 14. Relation between predicted and calculated strength using (KNN).

Tree Model

These five models were developed considering minimum number of
instants in leaves of 2.0 and minimum split subset of 5.0. The models began
with only one tree level and gradually increased to 9.0 levels. Figure 15
illustrates the reduction in Error % with increasing the number of layers.
The layouts of the generated modelsare presented in Figure 16.
Performance metrics of the last developed model for both training and
validation dataset are listed in Table 2. The achieved accuracy was92% and
R2 of 0.955. The relations between calculated and predicted values are
shown in Figure 17. The Decision Tree (Tree) model, achieving 92%
accuracy and an R? of 0.955, demonstrates strong predictive performance
for estimating the axial capacity of short concrete columns wrapped with
FRP sheets. A Decision Tree is an interpretable machine learning
algorithm that uses a tree-like structure to model decision rules based on
feature values (e.g., column shape, FRP thickness, material properties). Its
high performance suggests effective partitioning of the input space and
strong alignment between the training data and the problem's underlying
relationships. Accuracy (92%) indicates the model reliably predicts axial
capacity for most cases. R? (0.955) suggests the model explains 95.5% of the
variance in the dataset, highlighting its capability to capture the
complexity of the problem. The decision rules and thresholds are easy to
understand, making the model transparent for engineering applications.
Decision Trees naturally provide insights into the importance of input
variables, allowing identification of the most critical factors influencing
axial capacity. Trees handle non-linear relationships well, which is
essential for modeling interactions between variables such as column
geometry, FRP properties, and loading conditions. With high accuracy and
R2, the Tree model is a reliable tool for estimating the axial capacity of
short FRP-wrapped concrete columns under controlled conditions. The
interpretability of the model makes it accessible to engineers who may not
have expertise in machine learning. It can serve as a decision-support tool
to quickly estimate axial capacities without requiring advanced
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computation. The high R? indicates strong generalization across the
dataset, but care must be taken to ensure the training data includes all
relevant field scenarios (e.g., different column shapes and FRP
configurations). The model's ability to identify critical variables can guide
engineers to focus on key design parameters, such as the effect of FRP
thickness or the influence of column cross-sectional shape. Decision Trees
excel at providing discrete predictions for specific cases, such as axial
capacity variations based on FRP layer count or different concrete grades.
For broader applicability, consider using an ensemble of trees (e.g.,
Random Forest or Gradient Boosting) to improve robustness and reduce
the potential for overfitting. The model's insights can help optimize the use
of FRP materials, balancing strength and cost. Its interpretable nature
enables use as a decision-support tool in design reviews, allowing
engineers to assess the impact of different design choices quickly. With
minimal computational requirements for predictions, the Tree model is
well-suited for real-time or on-site estimations of axial capacity. Compared
to more complex models like SVM or Neural Networks, the Tree model
offers superior interpretability while maintaining comparable predictive
performance (R? of 0.955 vs. typical R2 > 0.9 for other high-performing
models). Outperforms simple models like Naive Bayes or poorly tuned
algorithms in both accuracy and usability. The Tree model, achieving 92%
accuracy and R? of 0.955, is a strong candidate for predicting the axial
capacity of short FRP-wrapped concrete columns. Its high reliability,
interpretability, and ease of use make it well-suited for both design
optimization and on-site applications. However, careful validation, data
quality assurance, and the inclusion of safety factors are essential to
ensure its effectiveness in diverse field conditions. For even greater
robustness, ensemble methods based on Decision Trees could be explored
as an enhancement to the model.

8 10

Figure 15. Reduction in Error % with increasing the No. of layers.
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Figure 16. The layout of the developed (Tree).
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Figure 17. Relation between predicted and calculated strength using (Tree).

RF Model

Finally, nine (RF) models were generated. The models began with only
three trees and two level and increased up to nine trees and four levels.
Figure 18 shows the reduction in Error % with increasing number of Tress
and layers. Accordingly, the models with nine trees and four layers are
considered. The developed modelsare graphically presented using
Pythagorean Forest in Figure 19. These arrangements leaded to a good
average accuracy of 88% and R2 of 0.91. The relations between calculated
and predicted values are shown in Figure 20. The Random Forest (RF)
model, achieving an average accuracy of 88% and an R2? of 0.91,
demonstrates solid predictive capabilities for estimating the axial capacity
of short concrete columns wrapped with FRP sheets. Below is an analysis
of its design and implications for field applications. RF is an ensemble
learning method that builds multiple Decision Trees and aggregates their
predictions, improving accuracy and robustness compared to a single tree.
The model's high performance (88% accuracy, R2 of 0.91) reflects its ability
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to model complex, non-linear relationships between input features (e.g.,
column shape, FRP thickness, and material properties) and axial capacity.
Accuracy (88%) indicates reliable predictions for most cases but leaves
some room for improvement. R2 (0.91) suggests the model explains 91% of
the variance, which is strong but slightly lower than some other advanced
models. RF reduces overfitting by averaging predictions across multiple
trees. RF provides insights into which input variables (e.g., FRP
configuration or concrete strength) contribute most to predictions. RF
works well with both numerical and categorical data and captures non-
linear interactions effectively. While more interpretable than Neural
Networks, RF models are less intuitive than single Decision Trees. RF
requires more computational resources for training and prediction
compared to simpler models, which might limit its scalability for very
large datasets. With 88% accuracy and R2 of 0.91, the RF model is a reliable
tool for predicting axial capacity in typical scenarios. However, it may
struggle with edge cases or highly unconventional column designs. The
ensemble nature of RF ensures stable predictions across diverse
conditions, making it suitable for varying column geometries and FRP
configurations. RF's ability to generalize well reduces the risk of
overfitting, ensuring reliable predictions in field conditions even with
moderate variations in input data. Feature importance rankings from RF
can help engineers identify and prioritize the most influential factors
affecting axial capacity, aiding in both design and material selection. For
large-scale applications, optimize the computational pipeline by limiting
the number of trees or parallelizing training. Embed the RF model into
user-friendly software or decision-support tools to facilitate its application
by engineers without specialized knowledge in machine learning. The RF
model can help optimize column designs by evaluating how different
parameters (e.g., FRP layers, column shapes) influence axial capacity. RF
predictions can complement traditional methods, providing quick and
reliable capacity estimates for preliminary designs or comparative studies.
With suitable computational tools, the RF model can be used for real-time
predictions on-site, aiding in quick decision-making during construction
or retrofitting. By identifying the most critical design variables, RF can
help minimize overdesign and material waste, reducing overall costs. RF
strikes a good balance between accuracy and interpretability,
outperforming simpler models like KNN or Naive Bayes while being easier
to understand than Neural Networks. Its robustness makes it more reliable
than single Decision Trees or models prone to overfitting. RF's
performance (88% accuracy, R2 of 0.91) is slightly lower than other
advanced models like Gradient Boosting or Support Vector Machines,
which can achieve R2 values exceeding 0.95. Computational complexity is
higher compared to simpler models, making it less ideal for extremely
large datasets or real-time applications without optimization. The Random
Forest model, with 88% accuracy and an R? of 0.91, is a robust and reliable
tool for predicting the axial capacity of short concrete columns wrapped
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with FRP sheets. Its ensemble approach ensures consistent and
generalizable predictions, making it suitable for a wide range of design
and field applications. However, there is room for improvement in
accuracy, and validation on diverse datasets is essential to ensure field
reliability. RF’s balance of performance and interpretability makes it a
strong candidate for integration into engineering workflows, particularly
in scenarios where computational resources and data quality are well-
managed. The Taylor diagram has been presented in Figure 21 for
comparing the accuracies of the developed models for (Fco/Fcc).

—8—2 levels
—0—3 levels

4 levels

5 6

Figure 18. Reduction in Error % with increasing the No. of Tress and layers.

Figure 19. Pythagorean Forest diagram for the developed (RF) models.
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Figure 20. Relation between predicted and calculated strength using (RF).

Comparatively, Table 2 shows the summary of the performance
evaluation of the models. The performance of the developed models for
predicting compressive strength (Fc) was evaluated based on statistical
error metrics and accuracy. The GB, Tree, and KNN models exhibited the
best performance, achieving high accuracy rates above 90% and low error
values. GB and Tree models both attained 90% accuracy in training and 93%
in validation, with root mean square errors (RMSE) of 0.162 MPa and 0.106
MPa, respectively, indicating strong predictive reliability. KNN followed
closely with 91% accuracy in training and 92% in validation, maintaining
low mean absolute error (MAE) and mean squared error (MSE) values. The
CN2 and SVM models demonstrated slightly lower accuracy at 87% during
training but improved to 93% in validation, suggesting robust
generalization capability. The RF model performed well with an accuracy
of 86% in training and 89% in validation but had higher RMSE values
compared to the top-performing models. In contrast, the NB and SGD
models yielded the weakest results. NB exhibited poor predictive
performance with 44% accuracy in training and 33% in validation,
accompanied by significantly high error metrics, such as an RMSE of 0.923
MPa in training and 1.086 MPa in validation. SGD, although performing
better than NB, showed only moderate prediction accuracy with 68% in
training and 71% in validation, along with relatively high RMSE values of
0.535 MPa and 0.474 MPa, respectively. Overall, the GB, Tree, and KNN
models proved to be the most effective, followed by CN2, SVM, and RF,
which displayed strong but slightly lower performance. Meanwhile, the
NB and SGD models failed to provide reliable predictions due to their high
error margins and lower R? values.

Conversely, the present study's predictive models for estimating the
axial compressive strength of FRP-wrapped concrete columns
demonstrated strong accuracy, particularly with models such as GB, Tree,
KNN, and SVM, which achieved validation accuracy above 90%. These
results align with findings from previous studies, where machine learning
and artificial intelligence approaches have been widely used to enhance
prediction accuracy. Berradia et al. [10] employed artificial neural
networks (ANNs) and standard regression analysis to model the axial
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loading capacity of circular concrete columns wrapped with CFRP. Their
optimized ANN model showed superior accuracy compared to theoretical
models, which is consistent with the high accuracy achieved by the present
study's top-performing models such as GB, Tree, and KNN. Similarly, Ma et
al. [11] applied the XGBoost algorithm to predict the axial capacity of CFRP-
confined CFST columns, achieving an R? of 0.9719, which is comparable to
the present study's best-performing models, where R? values exceeded
0.94. The use of ensemble learning in Ma et al.'s research reinforces the
effectiveness of boosting techniques, as observed in the present study
where GB performed exceptionally well. Onyelowe et al. [5] explored Al-
based predictions of confined concrete strength using genetic
programming, ANN, and evolutionary polynomial regression. Their
findings highlighted the significant influence of confinement stress and
fiber tensile strength, aligning with the sensitivity analysis of the current
study, which identified confining stress and stiffness as the most
influential factors. Prakash and Nguyen [12] integrated Extreme Gradient
Boosting (XGB) with metaheuristic algorithms, ensuring high
generalizability over Monte Carlo runs, while the present study
demonstrated similarly strong generalization with its machine learning
models, particularly GB and Tree. Xue et al. [13] employed machine
learning models to predict lateral confinement coefficients, where genetic
programming (GP) outperformed other techniques due to its precision and
reduced error. This result resonates with the current study, where RSM
provided a closed-form equation, enhancing practical applicability.
Nematzadeh et al. [14] examined the eccentric compressive behavior of
CFRP-strengthened concrete columns, concluding that CFRP improved
strength and ductility. While their study developed an analytical model,
the present study’s ML models also demonstrated high predictive
performance, particularly in capturing the effects of confinement and
stiffness. Baili et al. [15] investigated the structural behavior of glass-FRP
reinforced concrete columns and developed an ANN model with a
theoretical equation. Their findings, with minimal discrepancies from test
results, align with the high prediction accuracy of the present study’s
models. Similarly, Ilyas et al. [16] introduced a gene expression
programming (GEP) model validated against an extensive dataset. While
GEP provided a simpler mathematical relationship, the present study’s
RSM model also offered a practical closed-form equation. Finally, Sayed et
al. [7] reviewed machine learning models for FRP-confined concrete
columns, emphasizing the effectiveness of gradient boosting and random
forest, which corresponds with the strong performance of GB and RF in
the present study. Overall, the present study’s machine learning models
achieved accuracy levels comparable to or exceeding those reported in
prior literature [20-25]. The superior performance of GB, Tree, and KNN
in this study aligns with the success of ensemble learning techniques and
artificial neural networks in previous research, confirming the robustness
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and reliability of machine learning for predicting the compressive
strength of FRP-wrapped concrete columns.
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Figure 21. Comparing the accuracies of the developed models for (Fco/Fcc) using Taylor charts, (a) Training
dataset, (b) Validation dataset.

RSM Models

The fit summary calculation was prematurely concluded based on
settings in the Transform tab, where the maximum model order for
process factors was limited to quadratic. The model selected on the model
tab may either match the design model or be of a lower order. The model
F-value of 101.97 indicates that the model is significant, with only a 0.01%
chance of such a high F-value arising from noise (see Tables 3 and 4). P-
values below 0.0500 identify significant model terms, which in this case
include B, C, D, E, AD, BC, BD, BE, CD, CE, DE, A2 B2, C2, D2, and E2
Conversely, P-values exceeding 0.1000 suggest insignificant terms.
Reducing the model by removing insignificant terms (while maintaining
hierarchical integrity) may enhance its performance. The Lack of Fit F-
value of 3.35 suggests that the Lack of Fit is significant, with a 0.01%
probability of such a result arising from noise. The predicted R? of 0.9717
aligns reasonably well with the adjusted R2 of 0.9009, as the difference is
below 0.2. Adequate precision, which measures the signal-to-noise ratio,
has a desirable value above 4. Here, the ratio is 79.693, indicating a strong
signal. Figures 22-24 have presented the model graphs for the residuals
and residuals versus predicted values of the axial capacity of short
concrete columns of different shapes wrapped with FRP sheets, Cook’s
distance and Box-Cox plot for power transform of the axial capacity of
short concrete columns of different shapes wrapped with FRP sheets
model, and the 3D optimized axial capacity of short concrete columns of
different shapes wrapped with FRP sheets with the two most impactful
parameters and the desirability of the optimized model with respect to the
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variables. This model is suitable for navigating the design space. The
equation (Equation (11)), expressed in terms of actual factor levels, can be
used to predict responses for specified factor levels in their original units.
However, it should not be used to assess the relative influence of each
factor, as the coefficients are scaled to reflect the units of the factors, and
the intercept is not located at the center of the design space.

Table 3. Fit summary response for Fcc/Fco.

Source Sequential p-value Lack of Fit p-value Adjusted R? Predicted R?

Linear <0.0001
2FI <0.0001
Quadratic <0.0001

<0.0001 0.6827 0.6757
<0.0001 0.7675 0.7571
<0.0001 0.9009 0.9717 Suggested

Table 4. Fit statistics.

Std. Dev. 0.2834 R?

0.9088

Mean 1.65 Adjusted R?
CV.% 17.14 Predicted R?

0.9009
0.9717

Adeq Precision 79.6929

Fec/Feo = 3.05509 -0.780868b/b0 -2.83775d/b +5.517591/b -7.93540Stiff +3.89712Conf -0.204645b/bo * d/b
+0.385846b/bo * 1/b +3.80636 b/bo * Stiff -0.830761b/bo * Conf -2.73539 d/b * r/b +2.61896 d/b * Stiff -1.64592
d/b * Conf +2.57042 r/b * Stiff +2.91830 1/b * Conf-4.83690 Stiff * Conf+0.314142 b/bo*+1.10344 d/b>-5.11228 (11

r/b%+3.37251 Stiff?+0.950795 Conf?
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Figure 22. Plots of (a) residuals and (b) residuals versus predicted values of the axial capacity of short
concrete columns of different shapes wrapped with FRP sheets.
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Figure 23. Plots of the (a) Cook’s distance and (b) Box-Cox plot for power transform ofthe axial capacity of
short concrete columns of different shapes wrapped with FRP sheets model.
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Figure 24. Plots of (a) the 3D optimized axial capacity of short concrete columns of different shapes wrapped
with FRP sheets with the two most impactful parameters and (b) the desirability of the optimized model

with respect to the variables.
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CONCLUSIONS

This research presents a comparative study between eight ML
classification and one symbolic model techniques namely GB, CN2, NB,
SVM, SGD, KNN, Tree, RF, and RSM to estimate the enhancement in axial
compressive strength of short concrete column with different cross section
shape and wrapped with FRP(Fco/Fcc)considering size effect (b/bo), aspect
ratio (d/b), corner rounding (r/b), wrapping stress (2.t.Ffrp/b.Fco) and
wrapping stiffness (2.t.Efpr/v.b.Ec).The outcomes of this study could be
concluded as follows:

(RSM, GB, CN2, SVM, KNN and Tree) models showed an excellent
accuracy more than90%, while (RF) model showed very good
accuracies of about (88%) and finally (NB, SGD) presented
unacceptable accuracy (less than 70%).

Both of correlation matrix and sensitivity analysis indicated that
confining stress (Conf) and stiffness (Stiff) are the most effective
inputs, then the corner radius and finally the aspect ratio and the
size effect.

All the developed models are too complicated to be used manually,
which may be considered as the main disadvantage of the ML
classification techniques compared with other symbolic regression
ML techniques such as RSM, GP and EPR. RSM in this case produced
a closed-form equation that can be applied manually.

The developed models are valid within the considered range of
parameter values, beyond this range; the prediction accuracy
should be verified.

For farther studies, more symbolic regression techniques may be
implemented to develop a unified formula for the axial capacity of
short concrete column wrapped with FRP.

The quantitative analysis demonstrates that the Gradient Boosting,
Tree, and K-Nearest Neighbors models achieved the highest
predictive performance, with validation accuracies exceeding 90%
and low error metrics, confirming their reliability in estimating
the axial compressive strength of FRP-wrapped concrete columns.
The RSM model exhibited strong statistical significance, with an F-
value 0f 101.97, a predicted R2 0f 0.9717, and an adequate precision
ratio of 79.693, indicating a robust signal for optimizing column
design parameters. Overall, the results confirm that machine
learning models, particularly ensemble and non-parametric
approaches, provide accurate and practical tools for predicting the
compressive behavior of FRP-confined short concrete columns.

Practical Application & Subsequent Impact of on the State of Practice

The practical application of this research lies in enhancing the
structural design and assessment of FRP-wrapped concrete columns,
leading to more efficient and reliable construction practices. By leveraging
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machine learning models to accurately predict the axial compressive
strength of these columns, engineers can optimize material usage, reduce
construction costs, and improve the safety and durability of infrastructure.
In real-world scenarios, this research can be applied to retrofit and
strengthen aging or damaged concrete structures, particularly in seismic
zones where reinforced concrete columns need additional confinement to
prevent catastrophic failure. The developed models can assist engineers in
selecting the appropriate FRP wrapping thickness, stiffness, and shape
modifications to achieve the desired load-bearing capacity. Additionally,
the closed-form equation generated by the RSM model offers a user-
friendly approach that allows practitioners to make quick and reliable
strength estimations without requiring complex computational tools. This
can be particularly beneficial for structural engineers, contractors, and
policymakers involved in infrastructure rehabilitation, bridge retrofitting,
and high-rise building construction. Overall, the integration of these
predictive models into structural design guidelines can contribute to the
development of sustainable, cost-effective, and resilient concrete
structures, ultimately improving the longevity and performance of
modern civil engineering projects.

The outcomes of this study have a substantial impact on the state of
practice in structural engineering by providing reliable, data-driven tools
for predicting the axial compressive strength of FRP-confined concrete
columns, which can enhance both design efficiency and structural safety.
The integration of machine learning models with sensitivity analysis
enables engineers to identify the most critical factors influencing column
performance, allowing for more informed decisions in material selection,
geometry optimization, and FRP confinement strategies. Furthermore, the
provision of a practical RSM-based closed-form equation facilitates direct
application in design practice, reducing dependence on extensive
experimental testing while supporting the adoption of FRP retrofitting
solutions for both circular and rectangular columns. Overall, this research
advances current engineering practice by combining predictive accuracy,
computational efficiency, and interpretability, promoting safer, more cost-
effective, and resilient reinforced concrete structures.

Recommendation for Future Research

Future research should focus on expanding the dataset to include a
broader range of concrete strengths, FRP types, and column geometries to
enhance the generalizability of the developed models. Incorporating
additional machine learning techniques, such as deep learning and hybrid
models, could further improve prediction accuracy and robustness.
Investigating the long-term performance of FRP-wrapped concrete
columns under various environmental conditions, including temperature
fluctuations, moisture exposure, and freeze-thaw cycles, would provide
valuable insights into their durability and aging characteristics.
Experimental validation of the models with real-world structural tests
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would strengthen their reliability and applicability in practical
engineering scenarios. Additionally, developing user-friendly software or
mobile applications based on the best-performing models could facilitate
real-time decision-making for engineers and designers. Integrating these
predictive tools into building codes and design guidelines would ensure
standardized and efficient implementation in construction projects.
Further exploration of the interaction between FRP confinement and
other strengthening techniques, such as internal steel reinforcement or
fiber additives, could lead to more comprehensive strengthening
strategies. Lastly, investigating the economic and environmental impacts
of FRP wrapping in comparison to traditional reinforcement methods
would support the advancement of sustainable construction practices.
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